
accept(3) accept(3)

NAME
accept − accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

DESCRIPTION
The argument s is a socket that has been created with socket(3N) and bound to an address with bind(3N),
and that is listening for connections after a call to listen(3N). The accept() function extracts the first con-
nection on the queue of pending connections, creates a new socket with the properties of s, and allocates a
new file descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is
not marked as non-blocking, accept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on the queue, accept() returns an error as
described below. The accept() function uses the netconfig(4) file to determine the STREAMS device file
name associated with s. This is the device on which the connect indication will be accepted. The accepted
socket, ns, is used to read and write data to and from the socket that connected to ns; it is not used to accept
more connections. The original socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layer. The exact format of the addr parameter is determined by the domain
in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

The accept() function is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept() by selecting or polling it for a
read. However, this will only indicate when a connect indication is pending; it is still necessary to call
accept().

RETURN VALUES
The accept() function returns −1 on error. If it succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
accept() will fail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding to s could not be found in the netcon-
fig file.

ENOMEM There was insufficient user memory available to complete the operation.

EPROT O A protocol error has occurred; for example, the STREAMS protocol stack has not
been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.

SEE ALSO
poll(2), bind(3N), connect(3N), listen(3N), select(3C), socket(3N), netconfig(4), attributes(5), socket(5)

SOSI-Klausur Manual-Auszug 2004-09-13 1

bind(3) bind(3)

NAME
bind − bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION
bind() assigns a name to an unnamed socket. When a socket is created with socket(3N), it exists in a name
space (address family) but has no name assigned. bind() requests that the name pointed to by name be
assigned to the socket.

RETURN VALUES
If the bind is successful, 0 is returned. A return value of −1 indicates an error, which is further specified in
the global errno.

ERRORS
The bind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficient STREAMS resources for the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname in name.

ENOENT A component of the path prefix of the pathname in name does not exist.

ENOTDIR A component of the path prefix of the pathname in name is not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO
unlink(2), socket(3N), attributes(5), socket(5)

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains.

SOSI-Klausur Manual-Auszug 2004-09-13 1

fopen(3) fopen(3)

NAME
fopen − open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * filename, const char *mode);

DESCRIPTION
The fopen() function opens the file whose pathname is the string pointed to by filename, and associates a
stream with it.

The argument mode points to a string beginning with one of the following sequences:
r or rb open file for reading
w or wb truncate to zero length or create file for writing
a or ab append; open or create file for writing at end-of-file
r+ or rb+ or r+b open file for update (reading and writing)
w+ or wb+ or w+b truncate to zero length or create file for update
a+ or ab+ or a+b append; open or create file for update, writing at end-of-file

The character b has no effect, but is allowed for ISO C standard conformance. Opening a file with read
mode (r as the first character in the mode argument) fails if the file does not exist or cannot be read.

When a file is opened with update mode (+ as the second or third character in the mode argument), both
input and output may be performed on the associated stream. However, output must not be directly fol-
lowed by input without an intervening call to fflush(3S) or to a file positioning function (fseek(3S), fset-
pos(3S) or rewind(3S)), and input must not be directly followed by output without an intervening call to a
file positioning function, unless the input operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an interactive
device. The error and end-of-file indicators for the stream are cleared.

If mode is w, a, w+ or a+ and the file did not previously exist, upon successful completion, fopen() func-
tion will mark for update the st_atime, st_ctime and st_mtime fields of the file and the st_ctime and
st_mtime fields of the parent directory.

If mode is w or w+ and the file did previously exist, upon successful completion, fopen() will mark for
update the st_ctime and st_mtime fields of the file. The fopen() function will allocate a file descriptor as
open(2) does.

The largest value that can be represented correctly in an object of type off_t will be established as the offset
maximum in the open file description.

RETURN VALUES
Upon successful completion, fopen() returns a pointer to the object controlling the stream. Otherwise, a
null pointer is returned, and errno is set to indicate the error.

fopen() may fail and not set errno if there are no free stdio streams.

ERRORS
The fopen() function will fail if:

EACCES Search permission is denied on a component of the path prefix, or the file exists and the
permissions specified by mode are denied, or the file does not exist and write permission
is denied for the parent directory of the file to be created.

EINTR A signal was caught during fopen().

EISDIR The named file is a directory and mode requires write access.

SEE ALSO
fclose(3S), fdopen(3S), fflush(3S), freopen(3S), fsetpos(3S), rewind(3S),

SOSI-Klausur Manual-Auszug 2004-09-13 1

fread(3) fread(3)

NAME
fread, fwrite − binary stream input/output

SYNOPSIS
#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

DESCRIPTION
The function fread reads nmemb elements of data, each size bytes long, from the stream pointed to by
stream, storing them at the location given by ptr.

The function fwrite writes nmemb elements of data, each size bytes long, to the stream pointed to by
stream, obtaining them from the location given by ptr.

RETURN VALUE
fread and fwrite return the number of items successfully read or written (i.e., not the number of charac-
ters).

SOSI-Klausur Manual-Auszug 2004-09-13 1

ip(7) ip(7)

NAME
ip − Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_socket = socket(PF_INET, SOCK_STREAM, 0);
raw_socket = socket(PF_INET, SOCK_RAW, protocol);
udp_socket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmer’s interface is BSD sockets compatible. For more information on sockets, see socket(7).

An IP socket is created by calling the socket(2) function as socket(PF_INET, socket_type, protocol).
Valid socket types are SOCK_STREAM to open a tcp(7) socket, SOCK_DGRAM to open a udp(7)
socket, or SOCK_RAW to open a raw(7) socket to access the IP protocol directly. protocol is the IP proto-
col in the IP header to be received or sent. The only valid values for protocol are 0 and IPPROT O_TCP
for TCP sockets and 0 and IPPROT O_UDP for UDP sockets.

When a process wants to receive new incoming packets or connections, it should bind a socket to a local
interface address using bind(2). Only one IP socket may be bound to any giv en local (address, port) pair.
When INADDR_ANY is specified in the bind call the socket will be bound to all local interfaces. When
listen(2) or connect(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address set to INADDR_ANY.

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a port number. The basic IP
protocol does not supply port numbers, they are implemented by higher level protocols like tcp(7).

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
u_int16_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};
/* Internet address. */
struct in_addr {

u_int32_t s_addr; /* address in network byte order */
};

sin_family is always set to AF_INET. This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missing. sin_port contains the port in network byte order. The port numbers
below 1024 are called reserved ports. Only processes with effective user id 0 or the
CAP_NET_BIND_SERVICE capability may bind(2) to these sockets.

sin_addr is the IP host address. The addr member of struct in_addr contains the host interface address in
network order. in_addr should be only accessed using the inet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (see gethostbyname(3)).

Note that the address and the port are always stored in network order. In particular, this means that you
need to call htons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg(2), recvmsg(2), socket(7), netlink(7), tcp(7), udp(7), raw(7), ipfw(7)

SOSI-Klausur Manual-Auszug 2004-09-13 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

DESCRIPTION
calloc() allocates memory for an array of nmemb elements of size bytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocates size bytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to by ptr, which must have been returned by a previous call to mal-
loc(), calloc() or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour
occurs. If ptr is NULL, no operation is performed.

realloc() changes the size of the memory block pointed to by ptr to size bytes. The contents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized. If ptr
is NULL, the call is equivalent to malloc(size); if size is equal to zero, the call is equivalent to free(ptr).
Unless ptr is NULL, it must have been returned by an earlier call to malloc(), calloc() or realloc().

RETURN VALUE
For calloc() and malloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, or NULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different from ptr, or NULL if the request fails. If size was equal to 0, either NULL or a
pointer suitable to be passed to free() is returned. If realloc() fails the original block is left untouched - it is
not freed or moved.

SEE ALSO
brk(2), posix_memalign(3)

SOSI-Klausur Manual-Auszug 2004-09-13 1

sigaction(2) sigaction(2)

NAME
sigaction − POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
The sigaction system call is used to change the action taken by a process on receipt of a specific signal.

signum specifies the signal and can be any valid signal except SIGKILL and SIGSTOP.

If act is non−null, the new action for signal signum is installed from act. If oldact is non−null, the previous
action is saved in oldact.

The sigaction structure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to both sa_handler and sa_sigaction.

The sa_restorer element is obsolete and should not be used. POSIX does not specify a sa_restorer ele-
ment.

sa_handler specifies the action to be associated with signum and may be SIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_mask gives a mask of signals which should be blocked during execution of the signal handler. In addi-
tion, the signal which triggered the handler will be blocked, unless the SA_NODEFER or SA_NOMASK
flags are used.

sa_flags specifies a set of flags which modify the behaviour of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signum is SIGCHLD, do not receive notification when child processes stop (i.e., when
child processes receive one of SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigaction returns 0 on success and -1 on error.

ERRORS
EINVAL

An invalid signal was specified. This will also be generated if an attempt is made to change the
action for SIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO
kill(1), kill(2), killpg(2), pause(2), sigsetops(3),

SOSI-Klausur Manual-Auszug 2004-09-13 1

sigprocmask(2) sigprocmask(2)

NAME
sigprocmask − change and/or examine caller’s signal mask

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION sigprocmask
The sigprocmask() function is used to examine and/or change the caller’s signal mask. If the value is
SIG_BLOCK, the set pointed to by the argument set is added to the current signal mask. If the value is
SIG_UNBLOCK, the set pointed by the argument set is removed from the current signal mask. If the value
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argument set. If the
argument oset is not NULL, the previous mask is stored in the space pointed to by oset. If the value of the
argument set is NULL, the value how is not significant and the caller’s signal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of those signals will
be delivered before the call to sigprocmask() returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. See sigaction(2).

If sigprocmask() fails, the caller’s signal mask is not changed.

RETURN VALUES
On success, sigprocmask() returns 0. On failure, it returns −1 and sets errno to indicate the error.

ERRORS
sigprocmask() fails if any of the following is true:

EFAULT set or oset points to an illegal address.

EINVAL The value of the how argument is not equal to one of the defined values.

SEE ALSO
sigaction(2), sigsetops(3C),

SOSI-Klausur Manual-Auszug 2004-09-13 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION
These functions manipulate sigset_t data types, representing the set of signals supported by the implemen-
tation.

sigemptyset() initializes the set pointed to by set to exclude all signals defined by the system.

sigfillset() initializes the set pointed to by set to include all signals defined by the system.

sigaddset() adds the individual signal specified by the value of signo to the set pointed to by set.

sigdelset() deletes the individual signal specified by the value of signo from the set pointed to by set.

sigismember() checks whether the signal specified by the value of signo is a member of the set pointed to
by set.

Any object of type sigset_t must be initialized by applying either sigemptyset() or sigfillset() before
applying any other operation.

RETURN VALUES
Upon successful completion, the sigismember() function returns a value of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of −1 is returned and errno is set to indicate the error.

ERRORS
sigaddset(), sigdelset(), and sigismember() will fail if the following is true:

EINVAL The value of the signo argument is not a valid signal number.

sigfillset() will fail if the following is true:

EFAULT The set argument specifies an invalid address.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attributes(5), signal(5)

SPI-Klausur Manual-Auszug 2003-07-23 1

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
cc [flag . . .] file . . . −lsocket −lnsl [library . . .]

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. These families are defined in
the include file <sys/socket.h>. There must be an entry in the netconfig(4) file for at least each protocol
family and type required. If protocol has been specified, but no exact match for the tuplet family, type, pro-
tocol is found, then the first entry containing the specified family and type with zero for protocol will be
used. The currently understood formats are:

PF_UNIX UNIX system internal protocols

PF_INET ARPA Internet protocols

The socket has the indicated type, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams. An out-of-
band data transmission mechanism may be supported. A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length). A SOCK_SEQPACKET
socket may provide a sequenced, reliable, two-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entire packet with each read system call.
This facility is protocol specific, and presently not implemented for any protocol family. SOCK_RAW
sockets provide access to internal network interfaces. The types SOCK_RAW, which is available only to
the super-user, and SOCK_RDM, for which no implementation currently exists, are not described here.

protocol specifies a particular protocol to be used with the socket. Normally only a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. If a protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in
a connected state before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred using read(2) and write(2) calls or
some variant of the send(3N) and recv(3N) calls. When a session has been completed, a close(2) may be
performed. Out-of-band data may also be transmitted as described on the send(3N) manual page and
received as described on the recv(3N) manual page.

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli-
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in the absence of other

SOSI-Klausur Manual-Auszug 2004-09-13 1

socket(3) socket(3)

activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (for instance 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream;
this causes naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only differ-
ence is that read(2) calls will return only the amount of data requested, and any remaining in the arriving
packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents named in
sendto(3N) calls. Datagrams are generally received with recvfrom(3N), which returns the next datagram
with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events with SIGIO
signals.

The operation of sockets is controlled by socket level options. These options are defined in the file
<sys/socket.h>. setsockopt(3N) and getsockopt(3N) are used to set and get options, respectively.

RETURN VALUES
A −1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
The socket() call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMS resources available to complete the opera-
tion.

EPROT ONOSUPPORT The protocol type or the specified protocol is not supported within this
domain.

SEE ALSO
close(2), fcntl(2), ioctl(2), read(2), write(2), accept(3N), bind(3N), connect(3N), getsockname(3N), get-
sockopt(3N), listen(3N), recv(3N), setsockopt(3N), send(3N), shutdown(3N), socketpair(3N),
attributes(5), in(5), socket(5)

SOSI-Klausur Manual-Auszug 2004-09-13 2

stat(2) stat(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char * file_name, struct stat *buf);
int lstat(const char * file_name, struct stat *buf);

DESCRIPTION
These functions return information about the specified file. You do not need any access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to by file_name and fills in buf .

lstat is identical to stat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
it refers to.

They all return a stat structure, which contains the following fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The value st_size gives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

The value st_blocks gives the size of the file in 512-byte blocks. (This may be smaller than st_size/512 e.g.
when the file has holes.)

RETURN VALUE
On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS
ENOENT

A component of the path file_name does not exist, or the path is an empty string.

EACCES
Permission denied.

ENAMETOOLONG
File name too long.

SEE ALSO
chmod(2), chown(2), readlink(2), utime(2)

SOSI-Klausur Manual-Auszug 2004-09-13 1

