
accept(3) accept(3)

NAME
accept − accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr * addr, int * addrlen);

DESCRIPTION
The arguments is a socket that has been created withsocket(3N) and bound to an address withbind(3N),
and that is listening for connections after a call tolisten(3N). Theaccept( )function extracts the first con-
nection on the queue of pending connections, creates a new socket with the properties ofs, and allocates a
new file descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is
not marked as non-blocking,accept( ) blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on the queue,accept( )returns an error as
described below. The accept( ) function uses thenetconfig(4) file to determine theSTREAMSdevice file
name associated withs. This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connected tons; it is not used to accept
more connections. The original socket (s) remains open for accepting further connections.

The argumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layer. The exact format of theaddr parameter is determined by the domain
in which the communication occurs.

The argumentaddrlen is a value-result parameter. Initially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept( )function is used with connection-based socket types, currently withSOCK_STREAM.

It is possible toselect(3C) orpoll(2) a socket for the purpose of anaccept( )by selecting or polling it for a
read. However, this will only indicate when a connect indication is pending; it is still necessary to call
accept( ).

RETURN VALUES
Theaccept( )function returns−1 on error. If it succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
accept( )will fail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding tos could not be found in thenetcon-
fig file.

ENOMEM There was insufficient user memory available to complete the operation.

EPROT O A protocol error has occurred; for example, theSTREAMSprotocol stack has not
been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.

SEE ALSO
poll(2), bind(3N), connect(3N), listen(3N), select(3C),socket(3N), netconfig(4), attributes(5), socket(5)

SOSI-Klausur Manual-Auszug 2005-09-08 1

bind(3) bind(3)

NAME
bind − bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION
bind( ) assigns a name to an unnamed socket. Whena socket is created withsocket(3N), it exists in a name
space (address family) but has no name assigned.bind( ) requests that the name pointed to bynamebe
assigned to the socket.

RETURN VALUES
If the bind is successful,0 is returned.A return value of−1 indicates an error, which is further specified in
the globalerrno.

ERRORS
Thebind( ) call will fail if:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelenis not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficientSTREAMSresources for the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in theUNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname inname.

ENOENT A component of the path prefix of the pathname innamedoes not exist.

ENOTDIR A component of the path prefix of the pathname innameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO
unlink (2), socket(3N), attributes(5), socket(5)

NOTES
Binding a name in theUNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (usingunlink (2)).

The rules used in name binding vary between communication domains.

SOSI-Klausur Manual-Auszug 2005-09-08 1



opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir );
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
The readdir_r() function initializes the structure referenced byentry and storesa pointer to this structure
in result. On successful return, the pointer returned at*result will have the samevalue as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns 0if successful or an error number to indicate failure.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, ornameis an empty string.

ENOTDIR
nameis not a directory.

SOSI-Klausur Manual-Auszug 2005-09-08 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file).The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared.Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed. The result of applyingfdopen to a
shared memory object is undefined.

RETURN VALUE
Upon successful completionfopen, fdopen and freopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or freopenwas inv alid.

The fopen, fdopen andfreopen functions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SOSI-Klausur Manual-Auszug 2005-09-08 1



ip(7) ip(7)

NAME
ip − Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_socket = socket(PF_INET, SOCK_STREAM, 0);
raw_socket = socket(PF_INET, SOCK_RAW, protocol);
udp_socket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmer’s interface is BSD sockets compatible.For more information on sockets, seesocket(7).

An IP socket is created by calling thesocket(2) function assocket(PF_INET, socket_type, protocol).
Valid socket types areSOCK_STREAM to open atcp(7) socket, SOCK_DGRAM to open audp(7)
socket, orSOCK_RAW to open araw(7) socket to access the IP protocol directly. protocol is the IP proto-
col in the IP header to be received or sent. Theonly valid values forprotocol are0 and IPPROT O_TCP
for TCP sockets and0 andIPPROT O_UDP for UDP sockets.

When a process wants to receive new incoming packets or connections, it should bind a socket to a local
interface address usingbind(2). Only one IP socket may be bound to any giv en local (address, port) pair.
When INADDR_ANY is specified in the bind call the socket will be bound toall local interfaces. When
listen(2) or connect(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address set toINADDR_ANY .

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a port number. The basic IP
protocol does not supply port numbers, they are implemented by higher level protocols liketcp(7).

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
u_int16_t sin_port; /* port in network byte order */
struct in_addrsin_addr; /*internet address */

};
/* Internet address. */
struct in_addr {

u_int32_t s_addr; /* address in network byte order */
};

sin_family is always set toAF_INET . This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missing.sin_portcontains the port in network byte order. The port numbers
below 1024 are called reserved ports. Only processes with effective user id 0 or the
CAP_NET_BIND_SERVICE capability maybind(2) to these sockets.

sin_addris the IP host address.Theaddr member ofstruct in_addr contains the host interface address in
network order. in_addr should be only accessed using theinet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (seegethostbyname(3)).

Note that the address and the port are always stored in network order. In particular, this means that you
need to callhtons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg(2), recvmsg(2), socket(7), netlink (7), tcp(7), udp(7), raw(7), ipfw (7)

SOSI-Klausur Manual-Auszug 2005-03-07 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr );
void *realloc(void *ptr , size_t size);

DESCRIPTION
calloc() allocates memory for an array ofnmembelements ofsizebytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to byptr, which must have been returned by a previous call tomal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined behaviour
occurs. Ifptr is NULL , no operation is performed.

realloc() changes the size of the memory block pointed to byptr to size bytes. Thecontents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized.If ptr
is NULL , the call is equivalent tomalloc(size); if size is equal to zero, the call is equivalent to free(ptr).
Unlessptr is NULL , it must have been returned by an earlier call tomalloc(), calloc()or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, orNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different fromptr, or NULL if the request fails. Ifsizewas equal to 0, either NULL or a
pointer suitable to be passed tofree() is returned.If realloc() fails the original block is left untouched - it is
not freed or moved.

CONFORMING TO
ANSI-C

SEE ALSO
brk (2), posix_memalign(3)

SOS1-Klausur Manual-Auszug 2005-06-09 1



PTHREAD_COND(3) PTHREAD_COND(3)

NAME
pthread_cond_init, pthread_cond_destroy, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, pthread_cond_timedwait − operations on conditions

SYNOPSIS
#include <pthread.h>

pthread_cond_tcond= PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthr ead_cond_timedwait(pthread_cond_t *cond, pthr ead_mutex_t *mutex, const struct timespec
* abstime);

int pthread_cond_destroy(pthread_cond_t *cond);

DESCRIPTION
A condition (short for ‘‘condition variable’’) is a synchronization device that allows threads to suspend
execution and relinquish the processors until some predicate on shared data is satisfied. The basic opera-
tions on conditions are: signal the condition (when the predicate becomes true), and wait for the condition,
suspending the thread execution until another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race condition where a thread
prepares to wait on a condition variable and another thread signals the condition just before the first thread
actually waits on it.

pthread_cond_init initializes the condition variable cond, using the condition attributes specified in
cond_attr, or default attributes ifcond_attr is NULL . The LinuxThreads implementation supports no
attributes for conditions, hence thecond_attrparameter is actually ignored.

Variables of type pthread_cond_t can also be initialized statically, using the constant
PTHREAD_COND_INITIALIZER .

pthread_cond_signalrestarts one of the threads that are waiting on the condition variablecond. If no
threads are waiting oncond, nothing happens. If several threads are waiting oncond, exactly one is
restarted, but it is not specified which.

pthread_cond_broadcastrestarts all the threads that are waiting on the condition variablecond. Nothing
happens if no threads are waiting oncond.

pthread_cond_waitatomically unlocks themutex(as perpthread_unlock_mutex) and waits for the con-
dition variablecondto be signaled. The thread execution is suspended and does not consume any CPU time
until the condition variable is signaled. Themutexmust be locked by the calling thread on entrance to
pthread_cond_wait. Before returning to the calling thread,pthread_cond_wait re-acquiresmutex(as per
pthread_lock_mutex).

Unlocking the mutex and suspending on the condition variable is done atomically. Thus, if all threads
always acquire the mutex before signaling the condition, this guarantees that the condition cannot be

SOSI-Klausur Manual-Auszug 2005-09-08 1

PTHREAD_COND(3) PTHREAD_COND(3)

signaled (and thus ignored) between the time a thread locks the mutex and the time it waits on the condition
variable.

pthread_cond_timedwaitatomically unlocksmutexand waits oncond, as pthread_cond_waitdoes, but it
also bounds the duration of the wait. Ifcondhas not been signaled within the amount of time specified by
abstime, the mutex mutexis re-acquired andpthread_cond_timedwait returns the errorETIMEDOUT .
Theabstimeparameter specifies an absolute time, with the same origin astime(2) andgettimeofday(2): an
abstimeof 0 corresponds to 00:00:00 GMT, January 1, 1970.

pthread_cond_destroydestroys a condition variable, freeing the resources it might hold. No threads must
be waiting on the condition variable on entrance topthread_cond_destroy. In the LinuxThreads imple-
mentation, no resources are associated with condition variables, thuspthread_cond_destroyactually does
nothing except checking that the condition has no waiting threads.

CANCELLATION
pthread_cond_wait andpthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resumes execution, then locks again themutex
argument topthread_cond_wait and pthread_cond_timedwait, and finally executes the cancellation.
Consequently, cleanup handlers are assured thatmutexis locked when they are called.

ASYNC-SIGNAL SAFETY
The condition functions are not async-signal safe, and should not be called from a signal handler. In partic-
ular, calling pthread_cond_signalor pthread_cond_broadcastfrom a signal handler may deadlock the
calling thread.

RETURN VALUE
All condition variable functions return 0 on success and a non-zero error code on error.

ERRORS
pthread_cond_init, pthread_cond_signal, pthread_cond_broadcast, and pthread_cond_wait never
return an error code.

Thepthread_cond_timedwaitfunction returns the following error codes on error:

ETIMEDOUT
the condition variable was not signaled until the timeout specified byabstime

EINTR
pthread_cond_timedwaitwas interrupted by a signal

Thepthread_cond_destroyfunction returns the following error code on error:

EBUSY
some threads are currently waiting oncond.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_condattr_init (3), pthread_mutex_lock(3), pthread_mutex_unlock(3), gettimeofday(2),
nanosleep(2).

SOSI-Klausur Manual-Auszug 2005-09-08 2



PTHREAD_CREATE(3) PTHREAD_CREATE(3)

NAME
pthread_create − create a new thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthread_t * thread, pthr ead_attr_t * attr, void * (* start_routine)(void *), void *
arg);

DESCRIPTION
pthread_createcreates a new thread of control that executes concurrently with the calling thread. The new
thread applies the functionstart_routinepassing itarg as first argument. The new thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equivalent to callingpthread_exit(3) with the result returned bystart_routineas exit code.

Theattr argument specifies thread attributes to be applied to the new thread. Seepthread_attr_init (3) for a
complete list of thread attributes. Theattr argument can also beNULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

RETURN VALUE
On success, the identifier of the newly created thread is stored in the location pointed by thethreadargu-
ment, and a 0 is returned. On error, a non-zero error code is returned.

ERRORS
EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN
more thanPTHREAD_THREADS_MAX threads are already active.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_exit(3), pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SOSI-Klausur Manual-Auszug 2005-09-08 1

PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock,
pthread_mutex_destroy − operations on mutexes

SYNOPSIS
#include <pthread.h>

pthread_mutex_t fastmutex= PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t recmutex= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

pthread_mutex_t errchkmutex= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one thread). A
mutex can never be owned by two different threads simultaneously. A thread attempting to lock a mutex
that is already locked by another thread is suspended until the owning thread unlocks the mutex first.

pthread_mutex_init initializes the mutex object pointed to bymutexaccording to the mutex attributes
specified inmutexattr. If mutexattris NULL , default attributes are used instead.

The LinuxThreads implementation supports only one mutex attributes, themutex kind, which is either
‘‘ fast’’, ‘ ‘recursive’’ , or ‘‘error checking’’. The kind of a mutex determines whether it can be locked again
by a thread that already owns it. The default kind is ‘‘fast’’. Seepthread_mutexattr_init (3) for more
information on mutex attributes.

Variables of type pthread_mutex_t can also be initialized statically, using the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursive mutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutexes).

pthread_mutex_lock locks the given mutex. If the mutex is currently unlocked, it becomes locked and
owned by the calling thread, andpthread_mutex_lock returns immediately. If the mutex is already locked
by another thread,pthread_mutex_locksuspends the calling thread until the mutex is unlocked.

If the mutex is already locked by the calling thread, the behavior of pthread_mutex_lock depends on the
kind of the mutex. If the mutex is of the ‘‘fast’’ k ind, the calling thread is suspended until the mutex is
unlocked, thus effectively causing the calling thread to deadlock. If the mutex is of the ‘‘error checking’’
kind, pthread_mutex_lock returns immediately with the error codeEDEADLK . If the mutex is of the
‘‘ recursive’’ k ind, pthread_mutex_lock succeeds and returns immediately, recording the number of times
the calling thread has locked the mutex. An equal number ofpthread_mutex_unlock operations must be

SOSI-Klausur Manual-Auszug 2005-09-08 1



PTHREAD_MUTEX(3) PTHREAD_MUTEX(3)

performed before the mutex returns to the unlocked state.

pthread_mutex_trylock behaves identically topthread_mutex_lock, except that it does not block the
calling thread if the mutex is already locked by another thread (or by the calling thread in the case of a
‘‘ fast’’ mutex). Instead,pthread_mutex_trylock returns immediately with the error codeEBUSY.

pthread_mutex_unlock unlocks the given mutex. The mutex is assumed to be locked and owned by the
calling thread on entrance topthread_mutex_unlock. If the mutex is of the ‘‘fast’’ k ind,
pthread_mutex_unlock always returns it to the unlocked state. If it is of the ‘‘recursive’’ k ind, it decre-
ments the locking count of the mutex (number ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is the mutex actually unlocked.

On ‘‘error checking’’ mutexes, pthread_mutex_unlock actually checks at run-time that the mutex is
locked on entrance, and that it was locked by the same thread that is now calling pthread_mutex_unlock.
If these conditions are not met, an error code is returned and the mutex remains unchanged.‘‘ Fast’’ and
‘‘ recursive’’ mutexes perform no such checks, thus allowing a locked mutex to be unlocked by a thread
other than its owner. This is non-portable behavior and must not be relied upon.

pthread_mutex_destroydestroys a mutex object, freeing the resources it might hold. The mutex must be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated with mutex objects,
thuspthread_mutex_destroyactually does nothing except checking that the mutex is unlocked.

RETURN VALUE
pthread_mutex_init always returns 0. The other mutex functions return 0 on success and a non-zero error
code on error.

ERRORS
Thepthread_mutex_lockfunction returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EDEADLK
the mutex is already locked by the calling thread (‘‘error checking’’ mutexes only).

Thepthread_mutex_unlockfunction returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EPERM
the calling thread does not own the mutex (‘‘ error checking’’ mutexes only).

Thepthread_mutex_destroyfunction returns the following error code on error:

EBUSY
the mutex is currently locked.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_mutexattr_init (3), pthread_mutexattr_setkind_np(3), pthread_cancel(3).

SOSI-Klausur Manual-Auszug 2005-09-08 2

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
cc [ flag . . .  ] file . . . −lsocket −lnsl[ library . . .  ]

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket( ) creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. Thesefamilies are defined in
the include file<sys/socket.h>. There must be an entry in thenetconfig(4) file for at least each protocol
family and type required. Ifprotocolhas been specified, but no exact match for the tuplet family, type, pro-
tocol is found, then the first entry containing the specified family and type with zero for protocol will be
used. Thecurrently understood formats are:

PF_UNIX UNIX system internal protocols

PF_INET ARPA Internet protocols

The socket has the indicatedtype, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams. An out-of-
band data transmission mechanism may be supported.A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).A SOCK_SEQPACKET
socket may provide a sequenced, reliable, two-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entire packet with each read system call.
This facility is protocol specific, and presently not implemented for any protocol family. SOCK_RAW
sockets provide access to internal network interfaces. ThetypesSOCK_RAW, which is available only to
the super-user, and SOCK_RDM, for which no implementation currently exists, are not described here.

protocolspecifies a particular protocol to be used with the socket. Normallyonly a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. Ifa protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of typeSOCK_STREAM are full-duplex byte streams, similar to pipes.A stream socket must be in
a connectedstate before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred usingread(2) andwrite (2) calls or
some variant of thesend(3N) andrecv(3N) calls. When a session has been completed, aclose(2) may be
performed. Out-of-banddata may also be transmitted as described on thesend(3N) manual page and
received as described on therecv(3N) manual page.

The communications protocols used to implement aSOCK_STREAM insure that data is not lost or dupli-
cated. Ifa piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and withETIMEDOUT as the specific code in the global variableerrno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in the absence of other

SOSI-Klausur Manual-Auszug 2005-09-08 1



socket(3) socket(3)

activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (for instance 5 minutes).A SIGPIPE signal is raised if a process sends on a broken stream;
this causes naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls asSOCK_STREAM sockets. Theonly differ-
ence is thatread(2) calls will return only the amount of data requested, and any remaining in the arriving
packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents named in
sendto(3N) calls. Datagrams are generally received with recvfrom(3N), which returns the next datagram
with its return address.

An fcntl (2) call can be used to specify a process group to receive aSIGURG signal when the out-of-band
data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events withSIGIO
signals.

The operation of sockets is controlled by socket level options. These options are defined in the file
<sys/socket.h>. setsockopt(3N) andgetsockopt(3N) are used to set and get options, respectively.

RETURN VALUES
A −1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesocket( ) call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMSresources available to complete the opera-
tion.

EPROT ONOSUPPORT The protocol type or the specified protocol is not supported within this
domain.

SEE ALSO
close(2), fcntl (2), ioctl(2), read(2), write (2), accept(3N), bind(3N), connect(3N), getsockname(3N), get-
sockopt(3N), listen(3N), recv(3N), setsockopt(3N), send(3N), shutdown(3N), socketpair(3N),
attributes(5), in(5), socket(5)

SOSI-Klausur Manual-Auszug 2005-09-08 2

stat(2) stat(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *file_name, struct stat * buf );
int fstat(int filedes, struct stat * buf );
int lstat(const char * file_name, struct stat * buf );

DESCRIPTION
These functions return information about the specified file.You do not need any access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to byfile_nameand fills inbuf .

lstat is identical tostat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
it refers to.

fstat is identical tostat, only the open file pointed to byfiledes(as returned byopen(2)) is stat-ed in place
of file_name.

They all return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize;/* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The valuest_sizegives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

The valuest_blocksgives the size of the file in 512-byte blocks. (This may be smaller thanst_size/512 e.g.
when the file has holes.) The valuest_blksizegives the "preferred" blocksize for efficient file system I/O.
(Writing to a file in smaller chunks may cause an inefficient read-modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atimefield. (See ‘noatime’ inmount(8).)

The fieldst_atimeis changed by file accesses, e.g. byexecve(2), mknod(2), pipe(2), utime(2) andread(2)
(of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, e.g. bymknod(2), truncate(2), utime(2) andwrite (2)
(of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or deletion of files
in that directory. Thest_mtimefield isnotchanged for changes in owner, group, hard link count, or mode.

SOSI-Klausur Manual-Auszug 2005-09-08 1



stat(2) stat(2)

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) characterdevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) fifo?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

The following flags are defined for thest_modefield:

S_IFMT 0170000 bitmask for the file type bitfields
S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 fifo
S_ISUID 0004000 set UID bit
S_ISGID 0002000 set GID bit (see below)
S_ISVTX 0001000 sticky bit (see below)
S_IRWXU 00700 mask for file owner permissions
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission
S_IRWXG 00070 mask for group permissions
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission
S_IRWXO 00007 mask for permissions for others (not in group)
S_IROTH 00004 othershave read permission
S_IWOTH 00002 othershave write permisson
S_IXOTH 00001 others have execute permission

The set GID bit (S_ISGID) has several special uses: For a directory it indicates that BSD semantics is to be
used for that directory: files created there inherit their group ID from the directory, not from the effective
group ID of the creating process, and directories created there will also get the S_ISGID bit set.For a file
that does not have the group execution bit (S_IXGRP) set, it indicates mandatory file/record locking.

The ‘sticky’ bit (S_ISVTX) on a directory means that a file in that directory can be renamed or deleted only
by the owner of the file, by the owner of the directory, and by a privileged process.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

SEE ALSO
chmod(2), chown(2), readlink (2), utime(2), capabilities(7)

SOSI-Klausur Manual-Auszug 2005-09-08 2

strerror(3) strerror(3)

NAME
strerror, strerror_r − return string describing error code

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
int strerror_r(int errnum, char *buf , size_t n);

DESCRIPTION
Thestrerror() function returns a string describing the error code passed in the argumenterrnum, possibly
using the LC_MESSAGES part of the current locale to select the appropriate language.This string must
not be modified by the application, but may be modified by a subsequent call toperror() or strerror() . No
library function will modify this string.

The strerror_r() function is similar tostrerror() , but is thread safe. It returns the string in the user-sup-
plied bufferbuf of lengthn.

RETURN VALUE
Thestrerror() function returns the appropriate error description string, or an unknown error message if the
error code is unknown. Thevalue oferrno is not changed for a successful call, and is set to a nonzero value
upon error. Thestrerror_r() function returns 0 on success and −1 on failure, settingerrno.

ERRORS
EINVAL

The value oferrnumis not a valid error number.

ERANGE
Insufficient storage was supplied to contain the error description string.

CONFORMING TO
SVID 3, POSIX, BSD 4.3, ISO/IEC 9899:1990 (C89).
strerror_r() with prototype as given above is specified by SUSv3, and was in use under Digital Unix and
HP Unix. An incompatible function, with prototype

char *strerror_r(int errnum, char *buf , size_t n);

is a GNU extension used by glibc (since 2.0), and must be regarded as obsolete in view of SUSv3. The
GNU version may, but need not, use the user-supplied buffer. If it does, the result may be truncated in case
the supplied buffer is too small. The result is always NUL-terminated.

SEE ALSO
errno(3), perror (3), strsignal(3)

SOSI-Klausur Manual-Auszug 2005-09-08 1


