
opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dir ent *readdir(DIR * dir );
int r eaddir_r(DIR * dirp, struct dir ent *entry, struct dir ent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream.The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION r eaddir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION r eaddir_r
The readdir_r() function initializes the structure referenced byentry and storesa pointer to this structure
in result. On successful return, the pointer returned at*resultwill have the samevalue as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns 0if successful or an error number to indicate failure.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, ornameis an empty string.

ENOTDIR
nameis not a directory.

SOSI-Klausur Manual-Auszug 2005-09-08 1

exec(2) exec(2)

NAME
exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS
#include <unistd.h>

int execl(const char *path, const char *arg0, . . ., const char *argn, char * /*NULL*/ );

int execv(const char *path, char *const argv[ ] );

int execle(const char *path,char *const arg0[ ] , . . .  ,  const char *argn,
char * /*NULL*/ , char *const envp[ ] );

int execve (const char *path, char *const argv[ ] char *const envp[ ] );

int execlp (const char *file, const char *arg0, . . ., const char *argn, char * /*NULL*/ );

int execvp (const char *file, char *const argv[ ] );

DESCRIPTION
Each of the functions in theexecfamily overlays a new process image on an old process.The new process
image is constructed from an ordinary, executable file. This file is either an executable object file, or a file
of data for an interpreter. There can be no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int ar gc, char∗argv[], char ∗envp[]);

whereargc is the argument count,argv is an array of character pointers to the arguments themselves, and
envpis an array of character pointers to the environment strings.As indicated,argc is at least one, and the
first member of the array points to a string containing the name of the file.

The argumentsarg0, . . ., argn point to null-terminated character strings.These strings constitute the argu-
ment list available to the new process image.Conventionally at leastarg0 should be present.The arg0
argument points to a string that is the same aspath (or the last component ofpath). Thelist of argument
strings is terminated by a(char ∗)0 argument.

Theargv argument is an array of character pointers to null-terminated strings.These strings constitute the
argument list available to the new process image.By convention,argv must have at least one member, and
it should point to a string that is the same aspath (or its last component).Theargv argument is terminated
by a null pointer.

Thepath argument points to a path name that identifies the new process file.

Thefile argument points to the new process file.If file does not contain a slash character, the path prefix for
this file is obtained by a search of the directories passed in thePATH environment variable (seeenvir on(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process
image (seesignal(3C)). Otherwise,the new process image inherits the signal dispositions of the calling
process.

RETURN VALUES
If a function in theexecfamily returns to the calling process, an error has occurred; the return value is−1
anderrno is set to indicate the error.

SPI-Klausur Manual-Auszug 2003-07-23 1



malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmemb, size_t size);
void *malloc(size_t size);
void fr ee(void *ptr );
void *r ealloc(void *ptr , size_t size);

DESCRIPTION
calloc() allocates memory for an array ofnmembelements ofsizebytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to byptr, which must have been returned by a previous call tomal-
loc(), calloc() or realloc(). Otherwise, or iffr ee(ptr) has already been called before, undefined behaviour
occurs. Ifptr is NULL , no operation is performed.

realloc() changes the size of the memory block pointed to byptr to size bytes. Thecontents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized.If ptr
is NULL , the call is equivalent tomalloc(size); if size is equal to zero, the call is equivalent to fr ee(ptr).
Unlessptr is NULL , it must have been returned by an earlier call tomalloc(), calloc()or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, orNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different fromptr, or NULL if the request fails. If sizewas equal to 0, either NULL or a
pointer suitable to be passed tofree() is returned.If realloc() fails the original block is left untouched - it is
not freed or moved.

CONFORMING T O
ANSI-C

SEE ALSO
brk (2), posix_memalign(3)

SOS1-Klausur Manual-Auszug 2006-03-23 1

sigaction(2) sigaction(2)

NAME
sigaction − POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
Thesigactionsystem call is used to change the action taken by a process on receipt of a specific signal.

signumspecifies the signal and can be any valid signal exceptSIGKILL andSIGSTOP.

If act is non−null, the new action for signalsignumis installed fromact. If oldact is non−null, the previous
action is saved in oldact.

Thesigactionstructure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to bothsa_handlerandsa_sigaction.

The sa_restorer element is obsolete and should not be used.POSIX does not specify asa_restorer ele-
ment.

sa_handlerspecifies the action to be associated withsignumand may beSIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_maskgives a mask of signals which should be blocked during execution of the signal handler. In addi-
tion, the signal which triggered the handler will be blocked, unless theSA_NODEFER or SA_NOMASK
flags are used.

sa_flagsspecifies a set of flags which modify the behaviour of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signumis SIGCHLD , do not receive notification when child processes stop (i.e., when
child processes receive one ofSIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigactionreturns 0 on success and -1 on error.

ERRORS
EINVAL

An invalid signal was specified.This will also be generated if an attempt is made to change the
action forSIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO
kill (1), kill (2), killpg (2), pause(2), sigsetops(3),

SOSI-Klausur Manual-Auszug 2005-03-07 1



sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask − change and/or examine caller’s signal mask
sigsuspend − install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

int sigsuspend(const sigset_t *set);

DESCRIPTION sigprocmask
The sigprocmask( ) function is used to examine and/or change the caller’s signal mask. If the value is
SIG_BLOCK , the set pointed to by the argumentset is added to the current signal mask.If the value is
SIG_UNBLOCK , the set pointed by the argumentsetis removed from the current signal mask.If the value
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argumentset. If the
argumentosetis notNULL , the previous mask is stored in the space pointed to byoset. If the value of the
argumentset is NULL , the valuehow is not significant and the caller’s signal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call tosigprocmask( ), at least one of those signals will
be delivered before the call tosigprocmask( )returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. Seesigaction(2).

If sigprocmask( )fails, the caller’s signal mask is not changed.

RETURN VALUES
On success,sigprocmask( )returns0. On failure, it returns−1 and setserrno to indicate the error.

ERRORS
sigprocmask( )fails if any of the following is true:

EFAULT setor osetpoints to an illegal address.

EINVAL The value of thehowargument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend( )replaces the caller’s signal mask with the set of signals pointed to by the argumentsetand
then suspends the caller until delivery of a signal whose action is either to execute a signal catching func-
tion or to terminate the process.

If the action is to terminate the process,sigsuspend( )does not return.If the action is to execute a signal
catching function,sigsuspend( )returns after the signal catching function returns.On return, the signal
mask is restored to the set that existed before the call tosigsuspend( ).

It is not possible to block those signals that cannot be ignored (seesignal(5)); this restriction is silently
imposed by the system.

RETURN VALUES
Sincesigsuspend( )suspends process execution indefinitely, there is no successful completion return value.
On failure, it returns −1 and setserrno to indicate the error.

ERRORS
sigsuspend( )fails if either of the following is true:

EFAULT setpoints to an illegal address.

EINTR A signal is caught by the calling process and control is returned from the signal catching
function.

SEE ALSO
sigaction(2), sigsetops(3C),

SPI-Klausur Manual-Auszug 2003-02-12 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION
These functions manipulatesigset_tdata types, representing the set of signals supported by the implemen-
tation.

sigemptyset( )initializes the set pointed to bysetto exclude all signals defined by the system.

sigfillset( ) initializes the set pointed to bysetto include all signals defined by the system.

sigaddset( )adds the individual signal specified by the value ofsignoto the set pointed to byset.

sigdelset( )deletes the individual signal specified by the value ofsignofrom the set pointed to byset.

sigismember( )checks whether the signal specified by the value ofsignois a member of the set pointed to
by set.

Any object of typesigset_tmust be initialized by applying eithersigemptyset( )or sigfillset( ) before
applying any other operation.

RETURN VALUES
Upon successful completion, thesigismember( )function returns a value of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of −1 is returned anderrno is set to indicate the error.

ERRORS
sigaddset( ), sigdelset( ), andsigismember( )will f ail if the following is true:

EINVAL The value of thesignoargument is not a valid signal number.

sigfillset( )will f ail if the following is true:

EFAULT Thesetargument specifies an invalid address.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attrib utes(5), signal(5)

SPI-Klausur Manual-Auszug 2005-03-07 1



stat(2) stat(2)

NAME
stat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *file_name, struct stat * buf );
int lstat(const char * file_name, struct stat * buf );

DESCRIPTION
These functions return information about the specified file.You do not need any access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to byfile_nameand fills inbuf .

lstat is identical tostat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
it refers to.

They all return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize;/* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The valuest_sizegives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

The fieldst_atimeis changed by file accesses, e.g. byexecve(2), mknod(2), pipe(2), utime(2) andread(2)
(of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, e.g. bymknod(2), truncate(2), utime(2) andwrite (2)
(of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or deletion of files
in that directory. Thest_mtimefield isnotchanged for changes in owner, group, hard link count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

RETURN VALUE
On success, zero is returned.On error, −1 is returned, anderrno is set appropriately.

SEE ALSO
chmod(2), chown(2), readlink (2), utime(2), capabilities(7)

SOSI-Klausur Manual-Auszug 2005-09-08 1

waitpid(2) waitpid(2)

NAME
waitpid − wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int * stat_loc, int options);

DESCRIPTION
waitpid( ) suspends the calling process until one of its children changes state; if a child process changed
state prior to the call towaitpid( ), return is immediate.pid specifies a set of child processes for which sta-
tus is requested.

If pid is equal to(pid_t)−1, status is requested for any child process.

If pid is greater than(pid_t)0, it specifies the processID of the child process for which status is
requested.

If pid is equal to(pid_t)0 status is requested for any child process whose process groupID is equal
to that of the calling process.

If pid is less than(pid_t)−1, status is requested for any child process whose process groupID is
equal to the absolute value ofpid.

If waitpid( ) returns because the status of a child process is available, then that status may be evaluated with
the macros defined bywstat(5). If the calling process had specified a non-zero value ofstat_loc, the status
of the child process will be stored in the location pointed to bystat_loc.

The optionsargument is constructed from the bitwise inclusive OR of zero or more of the following flags,
defined in the header<sys/wait.h>:

WCONTINUED The status of any continued child process specified bypid, whose status has not
been reported since it continued, is also reported to the calling process.

WNOHANG waitpid( ) will not suspend execution of the calling process if status is not imme-
diately available for one of the child processes specified bypid.

WNOWAIT Keep the process whose status is returned instat_locin a waitable state. The pro-
cess may be waited for again with identical results.

RETURN VALUES
If waitpid( ) returns because the status of a child process is available, this function returns a value equal to
the processID of the child process for which status is reported.If waitpid( ) returns due to the delivery of a
signal to the calling process,−1 is returned anderrno is set toEINTR . If this function was invoked with
WNOHANG set inoptions, it has at least one child process specified bypid for which status is not available,
and status is not available for any process specified bypid, 0 is returned.Otherwise,−1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid( ) will f ail if one or more of the following is true:

ECHILD The process or process group specified bypid does not exist or is not a child of the call-
ing process or can never be in the states specified byoptions.

EINTR waitpid( ) was interrupted due to the receipt of a signal sent by the calling process.

EINVAL An invalid value was specified foroptions.

SEE ALSO
exec(2), exit(2), fork (2), sigaction(2), wstat(5)

SPI-Klausur Manual-Auszug 2003-07-23 1


