
connect(2) connect(2)

NAME
connect − initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

DESCRIPTION
The file descriptorsockfdmust refer to a socket. If the socket is of typeSOCK_DGRAM then the
serv_addraddress is the address to which datagrams are sent by default, and the only address from which
datagrams are received. If the socket is of typeSOCK_STREAM or SOCK_SEQPACKET , this call
attempts to make a connection to another socket. Theother socket is specified byserv_addr, which is an
address (of lengthaddrlen) in the communications space of the socket. Eachcommunications space inter-
prets theserv_addrparameter in its own way.

Generally, connection-based protocol sockets may successfullyconnectonly once; connectionless protocol
sockets may useconnectmultiple times to change their association. Connectionless sockets may dissolve
the association by connecting to an address with thesa_familymember ofsockaddrset toAF_UNSPEC.

RETURN VALUE
If the connection or binding succeeds, zero is returned.On error, −1 is returned, anderrno is set appropri-
ately.

ERRORS
The following are general socket errors only. There may be other domain-specific error codes.

EBADF
The file descriptor is not a valid index in the descriptor table.

EFAULT
The socket structure address is outside the user’s address space.

ENOTSOCK
The file descriptor is not associated with a socket.

EISCONN
The socket is already connected.

ECONNREFUSED
No one listening on the remote address.

ENETUNREACH
Network is unreachable.

EADDRINUSE
Local address is already in use.

EAFNOSUPPORT
The passed address didn’t hav ethe correct address family in itssa_familyfield.

EACCES, EPERM
The user tried to connect to a broadcast address without having the socket broadcast flag enabled
or the connection request failed because of a local firewall rule.

SEE ALSO
accept(2), bind(2), listen(2), socket(2), getsockname(2)

SOS1-Klausur Manual-Auszug 2008-03-13 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
The readdir_r() function initializes the structure referenced byentry and storesa pointer to this structure
in result. On successful return, the pointer returned at*result will have the samevalue as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns 0if successful or an error number to indicate failure.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, ornameis an empty string.

ENOTDIR
nameis not a directory.

SOS1-Klausur Manual-Auszug 2008-03-13 1

ferror(3) ferror(3)

NAME
clearerr, feof, ferror, fileno − check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);
int feof(FILE * stream);
int ferror(FILE * stream);
int fileno(FILE * stream);

DESCRIPTION
The functionclearerr() clears the end-of-file and error indicators for the stream pointed to bystream.

The functionfeof() tests the end-of-file indicator for the stream pointed to bystream, returning non-zero if
it is set. The end-of-file indicator can only be cleared by the functionclearerr().

The functionferror () tests the error indicator for the stream pointed to bystream, returning non-zero if it is
set. Theerror indicator can only be reset by theclearerr() function.

The functionfileno() examines the argumentstreamand returns its integer descriptor.

For non-locking counterparts, seeunlocked_stdio(3).

ERRORS
These functions should not fail and do not set the external variable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return −1 and seterrno to EBADF.)

CONFORMING TO
The functionsclearerr(), feof(), andferror () conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdio(3)

SOS1-Klausur Manual-Auszug 2008-03-13 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file).The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared.Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed. The result of applyingfdopen to a
shared memory object is undefined.

RETURN VALUE
Upon successful completionfopen, fdopen and freopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or freopenwas inv alid.

The fopen, fdopen andfreopen functions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SOS1-Klausur Manual-Auszug 2008-03-13 1

getc/fgets(3) getc/fgets(3)

NAME
fgetc, fgets, getc, getchar, gets, ungetc − input of characters and strings

SYNOPSIS
#include <stdio.h>

int fgetc(FILE * stream);
char *fgets(char *s, int size, FILE * stream);
int getc(FILE * stream);
int getchar(void);
char *gets(char *s);
int ungetc(int c, FILE * stream);

DESCRIPTION
fgetc() reads the next character fromstreamand returns it as anunsigned char cast to anint, or EOF on
end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluatesstreammore
than once.

getchar() is equivalent togetc(stdin).

gets() reads a line fromstdin into the buffer pointed to bys until either a terminating newline orEOF,
which it replaces with’\0’ . No check for buffer overrun is performed (seeBUGS below).

fgets() reads in at most one less thansizecharacters fromstreamand stores them into the buffer pointed to
by s. Reading stops after anEOF or a newline. If a newline is read, it is stored into the buffer. A ’\0’ is
stored after the last character in the buffer.

ungetc() pushesc back tostream, cast tounsigned char, where it is available for subsequent read opera-
tions. Pushed-backcharacters will be returned in reverse order; only one pushback is guaranteed.

Calls to the functions described here can be mixed with each other and with calls to other input functions
from thestdio library for the same input stream.

For non-locking counterparts, seeunlocked_stdio(3).

RETURN VALUE
fgetc(), getc() andgetchar() return the character read as anunsigned char cast to anint or EOF on end of
file or error.

gets() andfgets() returns on success, and NULL on error or when end of file occurs while no characters
have been read.

ungetc() returnsc on success, orEOF on error.

CONFORMING TO
C89, C99. LSB deprecatesgets().

BUGS
Never usegets(). Becauseit is impossible to tell without knowing the data in advance how many characters
gets() will read, and becausegets() will continue to store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break computer security. Usefgets() instead.

It is not advisable to mix calls to input functions from thestdio library with low-level calls to read(2) for
the file descriptor associated with the input stream; the results will be undefined and very probably not what
you want.

SEE ALSO
read(2), write (2), ferror (3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline(3), getwchar(3),
puts(3), scanf(3), ungetwc(3), unlocked_stdio(3)

SOS1-Klausur Manual-Auszug 2008-03-13 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_tnmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr , size_t size);

DESCRIPTION
calloc() allocates memory for an array ofnmembelements ofsizebytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocatessizebytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to byptr, which must have been returned by a previous call tomal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined behaviour
occurs. Ifptr is NULL , no operation is performed.

realloc() changes the size of the memory block pointed to byptr to size bytes. Thecontents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized.If ptr
is NULL , the call is equivalent tomalloc(size); if size is equal to zero, the call is equivalent to free(ptr).
Unlessptr is NULL , it must have been returned by an earlier call tomalloc(), calloc()or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, orNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different fromptr, or NULL if the request fails. Ifsizewas equal to 0, either NULL or a
pointer suitable to be passed tofree() is returned.If realloc() fails the original block is left untouched - it is
not freed or moved.

CONFORMING TO
ANSI-C

SEE ALSO
brk (2), posix_memalign(3)

SOS1-Klausur Manual-Auszug 2008-03-13 1

rename/unlink(2) rename/unlink(2)

NAME
rename − change the name or location of a file

unlink − remove directory entry

SYNOPSIS
#include <stdio.h>

int rename(const char *oldpath, const char *newpath);

int unlink(const char * path);

DESCRIPTION rename
rename() renames a file, moving it between directories if required.Any other hard links to the file (as cre-
ated usinglink (2)) are unaffected. Openfile descriptors foroldpathare also unaffected.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

DESCRIPTION unlink
The unlink() function removes a link to a file. It removes the link named by the pathname pointed to by
pathand decrements the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the file will be
freed and the file will no longer be accessible.If one or more processes have the file open when the last
link is removed, the link will be removed beforeunlink() returns, but the removal of the file contents will
be postponed until all references to the file are closed.

RETURN VALUES
Upon successful completion,0 is returned. Otherwise,−1 is returned anderrno is set to indicate the error.

SOS1-Klausur Manual-Auszug 2008-03-13 1

sigaction(2) sigaction(2)

NAME
sigaction − POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
Thesigactionsystem call is used to change the action taken by a process on receipt of a specific signal.

signumspecifies the signal and can be any valid signal exceptSIGKILL andSIGSTOP.

If act is non−null, the new action for signalsignumis installed fromact. If oldact is non−null, the previous
action is saved in oldact.

Thesigactionstructure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to bothsa_handlerandsa_sigaction.

The sa_restorerelement is obsolete and should not be used.POSIX does not specify asa_restorerele-
ment.

sa_handlerspecifies the action to be associated withsignumand may beSIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_maskgives a mask of signals which should be blocked during execution of the signal handler. In addi-
tion, the signal which triggered the handler will be blocked, unless theSA_NODEFER or SA_NOMASK
flags are used.

sa_flagsspecifies a set of flags which modify the behaviour of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signumis SIGCHLD , do not receive notification when child processes stop (i.e., when
child processes receive one ofSIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigactionreturns 0 on success and -1 on error.

ERRORS
EINVAL

An invalid signal was specified. This will also be generated if an attempt is made to change the
action forSIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO
kill (1), kill (2), killpg (2), pause(2), sigsetops(3),

SOS1-Klausur Manual-Auszug 2008-03-13 1

sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask − change and/or examine caller’s signal mask
sigsuspend − install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

int sigsuspend(const sigset_t *set);

DESCRIPTION sigprocmask
The sigprocmask() function is used to examine and/or change the caller’s signal mask. If the value is
SIG_BLOCK , the set pointed to by the argumentset is added to the current signal mask. If the value is
SIG_UNBLOCK , the set pointed by the argumentsetis removed from the current signal mask. If the value
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argumentset. If the
argumentosetis notNULL , the previous mask is stored in the space pointed to byoset. If the value of the
argumentset is NULL , the valuehow is not significant and the caller’s signal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call tosigprocmask(), at least one of those signals will
be delivered before the call tosigprocmask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. Seesigaction(2).

If sigprocmask()fails, the caller’s signal mask is not changed.

RETURN VALUES
On success,sigprocmask()returns0. On failure, it returns−1 and setserrno to indicate the error.

ERRORS
sigprocmask()fails if any of the following is true:

EFAULT setor osetpoints to an illegal address.

EINVAL The value of thehowargument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend()replaces the caller’s signal mask with the set of signals pointed to by the argumentsetand
then suspends the caller until delivery of a signal whose action is either to execute a signal catching func-
tion or to terminate the process.

If the action is to terminate the process,sigsuspend()does not return. If the action is to execute a signal
catching function,sigsuspend()returns after the signal catching function returns.On return, the signal
mask is restored to the set that existed before the call tosigsuspend().

It is not possible to block those signals that cannot be ignored (seesignal(5)); this restriction is silently
imposed by the system.

RETURN VALUES
Sincesigsuspend()suspends process execution indefinitely, there is no successful completion return value.
On failure, it returns −1 and setserrno to indicate the error.

ERRORS
sigsuspend()fails if either of the following is true:

EFAULT setpoints to an illegal address.

EINTR A signal is caught by the calling process and control is returned from the signal catching
function.

SEE ALSO
sigaction(2), sigsetops(3C),

SOS1-Klausur Manual-Auszug 2008-03-13 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION
These functions manipulatesigset_tdata types, representing the set of signals supported by the implemen-
tation.

sigemptyset()initializes the set pointed to bysetto exclude all signals defined by the system.

sigfillset() initializes the set pointed to bysetto include all signals defined by the system.

sigaddset()adds the individual signal specified by the value ofsignoto the set pointed to byset.

sigdelset()deletes the individual signal specified by the value ofsignofrom the set pointed to byset.

sigismember()checks whether the signal specified by the value ofsignois a member of the set pointed to
by set.

Any object of typesigset_tmust be initialized by applying eithersigemptyset()or sigfillset() before
applying any other operation.

RETURN VALUES
Upon successful completion, thesigismember()function returns a value of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of −1 is returned anderrno is set to indicate the error.

ERRORS
sigaddset(), sigdelset(), andsigismember()will fail if the following is true:

EINVAL The value of thesignoargument is not a valid signal number.

sigfillset()will fail if the following is true:

EFAULT Thesetargument specifies an invalid address.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attributes(5), signal(5)

SOS1-Klausur Manual-Auszug 2008-03-13 1

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. Thecurrently understood for-
mats are:

PF_INET ARPA Internet protocols

The socket has the indicatedtype, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams. An out-of-
band data transmission mechanism may be supported.A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).

protocolspecifies a particular protocol to be used with the socket. Normallyonly a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. Ifa protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of typeSOCK_STREAM are full-duplex byte streams, similar to pipes.A stream socket must be in
a connectedstate before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred usingread(2) andwrite (2) calls or
some variant of thesend(3N) andrecv(3N) calls. When a session has been completed, aclose(2) may be
performed. Out-of-banddata may also be transmitted as described on thesend(3N) manual page and
received as described on therecv(3N) manual page.

The communications protocols used to implement aSOCK_STREAM insure that data is not lost or dupli-
cated. Ifa piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and withETIMEDOUT as the specific code in the global variableerrno. A SIGPIPE signal
is raised if a process sends on a broken stream; this causes naive processes, which do not handle the signal,
to exit.

RETURN VALUES
A −1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesocket() call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory is available.

SEE ALSO
close(2), read(2), write (2), accept(3N), bind(3N), connect(3N), listen(3N),

SOS1-Klausur Manual-Auszug 2008-03-13 1

waitpid(2) waitpid(2)

NAME
waitpid − wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int * stat_loc, int options);

DESCRIPTION
waitpid() suspends the calling process until one of its children changes state; if a child process changed
state prior to the call towaitpid(), return is immediate.pid specifies a set of child processes for which sta-
tus is requested.

If pid is equal to(pid_t)−1, status is requested for any child process.

If pid is greater than(pid_t)0, it specifies the processID of the child process for which status is
requested.

If pid is equal to(pid_t)0 status is requested for any child process whose process groupID is equal
to that of the calling process.

If pid is less than(pid_t)−1, status is requested for any child process whose process groupID is
equal to the absolute value ofpid.

If waitpid() returns because the status of a child process is available, then that status may be evaluated with
the macros defined bywstat(5). If the calling process had specified a non-zero value ofstat_loc, the status
of the child process will be stored in the location pointed to bystat_loc.

The optionsargument is constructed from the bitwise inclusive OR of zero or more of the following flags,
defined in the header<sys/wait.h>:

WCONTINUED The status of any continued child process specified bypid, whose status has not
been reported since it continued, is also reported to the calling process.

WNOHANG waitpid() will not suspend execution of the calling process if status is not imme-
diately available for one of the child processes specified bypid.

WNOWAIT Keep the process whose status is returned instat_locin a waitable state. The pro-
cess may be waited for again with identical results.

RETURN VALUES
If waitpid() returns because the status of a child process is available, this function returns a value equal to
the processID of the child process for which status is reported.If waitpid() returns due to the delivery of a
signal to the calling process,−1 is returned anderrno is set toEINTR . If this function was invoked with
WNOHANG set inoptions, it has at least one child process specified bypid for which status is not available,
and status is not available for any process specified bypid, 0 is returned.Otherwise,−1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid() will fail if one or more of the following is true:

ECHILD The process or process group specified bypid does not exist or is not a child of the call-
ing process or can never be in the states specified byoptions.

EINTR waitpid() was interrupted due to the receipt of a signal sent by the calling process.

EINVAL An invalid value was specified foroptions.

SEE ALSO
exec(2), exit(2), fork (2), sigaction(2), wstat(5)

SOS1-Klausur Manual-Auszug 2008-03-13 1

