
accept(3) accept(3)

NAME
accept − accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr * addr, int * addrlen);

DESCRIPTION
The arguments is a socket that has been created withsocket(3N) and bound to an address withbind(3N),
and that is listening for connections after a call tolisten(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, creates a new socket with the properties ofs, and allocates a
new file descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is
not marked as non-blocking,accept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on the queue,accept()returns an error as
described below. The accept() function uses thenetconfig(4) file to determine theSTREAMSdevice file
name associated withs. This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connected tons; it is not used to accept
more connections. The original socket (s) remains open for accepting further connections.

The argumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layer. The exact format of theaddr parameter is determined by the domain
in which the communication occurs.

The argumentaddrlen is a value-result parameter. Initially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currently withSOCK_STREAM.

It is possible toselect(3C) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a
read. However, this will only indicate when a connect indication is pending; it is still necessary to call
accept().

RETURN VALUES
Theaccept()function returns−1 on error. If it succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will fail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding tos could not be found in thenetcon-
fig file.

ENOMEM There was insufficient user memory available to complete the operation.

EPROT O A protocol error has occurred; for example, theSTREAMSprotocol stack has not
been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.

SEE ALSO
poll(2), bind(3N), connect(3N), listen(3N), select(3C),socket(3N), netconfig(4), attributes(5), socket(5)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

bind(3) bind(3)

NAME
bind − bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION
bind() assigns a name to an unnamed socket. Whena socket is created withsocket(3N), it exists in a name
space (address family) but has no name assigned.bind() requests that the name pointed to bynamebe
assigned to the socket.

RETURN VALUES
If the bind is successful,0 is returned.A return value of−1 indicates an error, which is further specified in
the globalerrno.

ERRORS
Thebind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelenis not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficientSTREAMSresources for the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in theUNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname inname.

ENOENT A component of the path prefix of the pathname innamedoes not exist.

ENOTDIR A component of the path prefix of the pathname innameis not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO
unlink (2), socket(3N), attributes(5), socket(5)

NOTES
Binding a name in theUNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (usingunlink (2)).

The rules used in name binding vary between communication domains.

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR * dir);
int readdir_r(DIR * dirp, struct dirent * entry, struct dirent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION readdir_r
The readdir_r() function initializes the structure referenced byentry and storesa pointer to this structure
in result. On successful return, the pointer returned at*result will have the samevalue as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns 0if successful or an error number to indicate failure.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, ornameis an empty string.

ENOTDIR
nameis not a directory.

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file).The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared.Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed. The result of applyingfdopen to a
shared memory object is undefined.

RETURN VALUE
Upon successful completionfopen, fdopen and freopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or freopenwas inv alid.

The fopen, fdopen andfreopen functions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

getc/fgets(3) getc/fgets(3)

NAME
fgetc, fgets, getc, getchar, gets, ungetc − input of characters and strings

SYNOPSIS
#include <stdio.h>

int fgetc(FILE * stream);
char *fgets(char *s, int size, FILE * stream);
int getc(FILE * stream);
int getchar(void);
char *gets(char *s);
int ungetc(int c, FILE * stream);

DESCRIPTION
fgetc() reads the next character fromstreamand returns it as anunsigned char cast to anint, or EOF on
end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluatesstreammore
than once.

getchar() is equivalent togetc(stdin).

gets() reads a line fromstdin into the buffer pointed to bys until either a terminating newline orEOF,
which it replaces with’\0’ . No check for buffer overrun is performed (seeBUGS below).

fgets() reads in at most one less thansizecharacters fromstreamand stores them into the buffer pointed to
by s. Reading stops after anEOF or a newline. If a newline is read, it is stored into the buffer. A ’\0’ is
stored after the last character in the buffer.

ungetc() pushesc back tostream, cast tounsigned char, where it is available for subsequent read opera-
tions. Pushed-backcharacters will be returned in reverse order; only one pushback is guaranteed.

Calls to the functions described here can be mixed with each other and with calls to other input functions
from thestdio library for the same input stream.

For non-locking counterparts, seeunlocked_stdio(3).

RETURN VALUE
fgetc(), getc() andgetchar() return the character read as anunsigned char cast to anint or EOF on end of
file or error.

gets() andfgets() returns on success, and NULL on error or when end of file occurs while no characters
have been read.

ungetc() returnsc on success, orEOF on error.

CONFORMING TO
C89, C99. LSB deprecatesgets().

BUGS
Never usegets(). Becauseit is impossible to tell without knowing the data in advance how many characters
gets() will read, and becausegets() will continue to store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break computer security. Usefgets() instead.

It is not advisable to mix calls to input functions from thestdio library with low-level calls to read(2) for
the file descriptor associated with the input stream; the results will be undefined and very probably not what
you want.

SEE ALSO
read(2), write (2), ferror (3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline(3), getwchar(3),
puts(3), scanf(3), ungetwc(3), unlocked_stdio(3)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

ip(7) ip(7)

NAME
ip − Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp_socket = socket(PF_INET, SOCK_STREAM, 0);
raw_socket = socket(PF_INET, SOCK_RAW, protocol);
udp_socket = socket(PF_INET, SOCK_DGRAM, protocol);

DESCRIPTION
The programmer’s interface is BSD sockets compatible.For more information on sockets, seesocket(7).

An IP socket is created by calling thesocket(2) function assocket(PF_INET, socket_type, protocol).
Valid socket types areSOCK_STREAM to open atcp(7) socket, SOCK_DGRAM to open audp(7)
socket, orSOCK_RAW to open araw(7) socket to access the IP protocol directly. protocol is the IP proto-
col in the IP header to be received or sent. Theonly valid values forprotocol are0 and IPPROT O_TCP
for TCP sockets and0 andIPPROT O_UDP for UDP sockets.

When a process wants to receive new incoming packets or connections, it should bind a socket to a local
interface address usingbind(2). Only one IP socket may be bound to any giv en local (address, port) pair.
When INADDR_ANY is specified in the bind call the socket will be bound toall local interfaces. When
listen(2) or connect(2) are called on a unbound socket the socket is automatically bound to a random free
port with the local address set toINADDR_ANY .

ADDRESS FORMAT
An IP socket address is defined as a combination of an IP interface address and a port number. The basic IP
protocol does not supply port numbers, they are implemented by higher level protocols liketcp(7).

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
u_int16_t sin_port; /* port in network byte order */
struct in_addrsin_addr; /*internet address */

};
/* Internet address. */
struct in_addr {

u_int32_t s_addr; /* address in network byte order */
};

sin_family is always set toAF_INET . This is required; in Linux 2.2 most networking functions return
EINVAL when this setting is missing.sin_portcontains the port in network byte order. The port numbers
below 1024 are called reserved ports. Only processes with effective user id 0 or the
CAP_NET_BIND_SERVICE capability maybind(2) to these sockets.

sin_addris the IP host address.Theaddr member ofstruct in_addr contains the host interface address in
network order. in_addr should be only accessed using theinet_aton(3), inet_addr(3), inet_makeaddr(3)
library functions or directly with the name resolver (seegethostbyname(3)).

Note that the address and the port are always stored in network order. In particular, this means that you
need to callhtons(3) on the number that is assigned to a port. All address/port manipulation functions in
the standard library work in network order.

SEE ALSO
sendmsg(2), recvmsg(2), socket(7), netlink (7), tcp(7), udp(7), raw(7), ipfw (7)

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

pthread_cond(3) pthread_cond(3)

NAME
pthread_cond_init, pthread_cond_destroy, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, pthread_cond_timedwait − operations on conditions

SYNOPSIS
#include <pthread.h>

pthread_cond_tcond= PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthr ead_cond_timedwait(pthread_cond_t *cond, pthr ead_mutex_t *mutex, const struct timespec
* abstime);

int pthread_cond_destroy(pthread_cond_t *cond);

DESCRIPTION
A condition (short for ‘‘condition variable’’) is a synchronization device that allows threads to suspend
execution and relinquish the processors until some predicate on shared data is satisfied. The basic opera-
tions on conditions are: signal the condition (when the predicate becomes true), and wait for the condition,
suspending the thread execution until another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race condition where a thread
prepares to wait on a condition variable and another thread signals the condition just before the first thread
actually waits on it.

pthread_cond_init initializes the condition variable cond, using the condition attributes specified in
cond_attr, or default attributes ifcond_attr is NULL . The LinuxThreads implementation supports no
attributes for conditions, hence thecond_attrparameter is actually ignored.

Variables of type pthread_cond_t can also be initialized statically, using the constant
PTHREAD_COND_INITIALIZER .

pthread_cond_signalrestarts one of the threads that are waiting on the condition variablecond. If no
threads are waiting oncond, nothing happens. If several threads are waiting oncond, exactly one is
restarted, but it is not specified which.

pthread_cond_broadcastrestarts all the threads that are waiting on the condition variablecond. Nothing
happens if no threads are waiting oncond.

pthread_cond_waitatomically unlocks themutex(as perpthread_unlock_mutex) and waits for the con-
dition variablecondto be signaled. The thread execution is suspended and does not consume any CPU time
until the condition variable is signaled. Themutexmust be locked by the calling thread on entrance to
pthread_cond_wait. Before returning to the calling thread,pthread_cond_wait re-acquiresmutex(as per
pthread_lock_mutex).

Unlocking the mutex and suspending on the condition variable is done atomically. Thus, if all threads
always acquire the mutex before signaling the condition, this guarantees that the condition cannot be

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

pthread_cond(3) pthread_cond(3)

signaled (and thus ignored) between the time a thread locks the mutex and the time it waits on the condition
variable.

pthread_cond_timedwaitatomically unlocksmutexand waits oncond, as pthread_cond_waitdoes, but it
also bounds the duration of the wait. Ifcondhas not been signaled within the amount of time specified by
abstime, the mutex mutexis re-acquired andpthread_cond_timedwait returns the errorETIMEDOUT .
Theabstimeparameter specifies an absolute time, with the same origin astime(2) andgettimeofday(2): an
abstimeof 0 corresponds to 00:00:00 GMT, January 1, 1970.

pthread_cond_destroydestroys a condition variable, freeing the resources it might hold. No threads must
be waiting on the condition variable on entrance topthread_cond_destroy. In the LinuxThreads imple-
mentation, no resources are associated with condition variables, thuspthread_cond_destroyactually does
nothing except checking that the condition has no waiting threads.

CANCELLATION
pthread_cond_wait andpthread_cond_timedwait are cancellation points. If a thread is cancelled while
suspended in one of these functions, the thread immediately resumes execution, then locks again themutex
argument topthread_cond_wait and pthread_cond_timedwait, and finally executes the cancellation.
Consequently, cleanup handlers are assured thatmutexis locked when they are called.

ASYNC-SIGNAL SAFETY
The condition functions are not async-signal safe, and should not be called from a signal handler. In partic-
ular, calling pthread_cond_signalor pthread_cond_broadcastfrom a signal handler may deadlock the
calling thread.

RETURN VALUE
All condition variable functions return 0 on success and a non-zero error code on error.

ERRORS
pthread_cond_init, pthread_cond_signal, pthread_cond_broadcast, and pthread_cond_wait never
return an error code.

Thepthread_cond_timedwaitfunction returns the following error codes on error:

ETIMEDOUT
the condition variable was not signaled until the timeout specified byabstime

EINTR
pthread_cond_timedwaitwas interrupted by a signal

Thepthread_cond_destroyfunction returns the following error code on error:

EBUSY
some threads are currently waiting oncond.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_condattr_init (3), pthread_mutex_lock(3), pthread_mutex_unlock(3), gettimeofday(2),
nanosleep(2).

SP/SOS1-Klausur Manual-Auszug 2009-03-27 2

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME
pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthread_t * thread, pthr ead_attr_t * attr, void * (* start_routine)(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_createcreates a new thread of control that executes concurrently with the calling thread. The new
thread applies the functionstart_routinepassing itarg as first argument. The new thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equivalent to callingpthread_exit(3) with the result returned bystart_routineas exit code.

Theattr argument specifies thread attributes to be applied to the new thread. Seepthread_attr_init (3) for a
complete list of thread attributes. Theattr argument can also beNULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthread_exit terminates the execution of the calling thread.All cleanup handlers that have been set for the
calling thread withpthread_cleanup_push(3) are executed in reverse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called for all keys that have
non- NULL values associated with them in the calling thread (seepthread_key_create(3)). Finally,
execution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of the newly created thread is stored in the location pointed by thethreadargu-
ment, and a 0 is returned. On error, a non-zero error code is returned.

Thepthread_exit function never returns.

ERRORS
EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN
more thanPTHREAD_THREADS_MAX threads are already active.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init (3).

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

pthread_mutex(3) pthread_mutex(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock,
pthread_mutex_destroy − operations on mutexes

SYNOPSIS
#include <pthread.h>

pthread_mutex_t fastmutex= PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t recmutex= PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

pthread_mutex_t errchkmutex= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one thread). A
mutex can never be owned by two different threads simultaneously. A thread attempting to lock a mutex
that is already locked by another thread is suspended until the owning thread unlocks the mutex first.

pthread_mutex_init initializes the mutex object pointed to bymutexaccording to the mutex attributes
specified inmutexattr. If mutexattris NULL , default attributes are used instead.

The LinuxThreads implementation supports only one mutex attributes, themutex kind, which is either
‘‘ fast’’, ‘ ‘recursive’’ , or ‘‘error checking’’. The kind of a mutex determines whether it can be locked again
by a thread that already owns it. The default kind is ‘‘fast’’. Seepthread_mutexattr_init (3) for more
information on mutex attributes.

Variables of type pthread_mutex_t can also be initialized statically, using the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursive mutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutexes).

pthread_mutex_lock locks the given mutex. If the mutex is currently unlocked, it becomes locked and
owned by the calling thread, andpthread_mutex_lock returns immediately. If the mutex is already locked
by another thread,pthread_mutex_locksuspends the calling thread until the mutex is unlocked.

If the mutex is already locked by the calling thread, the behavior of pthread_mutex_lock depends on the
kind of the mutex. If the mutex is of the ‘‘fast’’ k ind, the calling thread is suspended until the mutex is
unlocked, thus effectively causing the calling thread to deadlock. If the mutex is of the ‘‘error checking’’
kind, pthread_mutex_lock returns immediately with the error codeEDEADLK . If the mutex is of the
‘‘ recursive’’ k ind, pthread_mutex_lock succeeds and returns immediately, recording the number of times
the calling thread has locked the mutex. An equal number ofpthread_mutex_unlock operations must be

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

pthread_mutex(3) pthread_mutex(3)

performed before the mutex returns to the unlocked state.

pthread_mutex_trylock behaves identically topthread_mutex_lock, except that it does not block the
calling thread if the mutex is already locked by another thread (or by the calling thread in the case of a
‘‘ fast’’ mutex). Instead,pthread_mutex_trylock returns immediately with the error codeEBUSY.

pthread_mutex_unlock unlocks the given mutex. The mutex is assumed to be locked and owned by the
calling thread on entrance topthread_mutex_unlock. If the mutex is of the ‘‘fast’’ k ind,
pthread_mutex_unlock always returns it to the unlocked state. If it is of the ‘‘recursive’’ k ind, it decre-
ments the locking count of the mutex (number ofpthread_mutex_lock operations performed on it by the
calling thread), and only when this count reaches zero is the mutex actually unlocked.

On ‘‘error checking’’ mutexes, pthread_mutex_unlock actually checks at run-time that the mutex is
locked on entrance, and that it was locked by the same thread that is now calling pthread_mutex_unlock.
If these conditions are not met, an error code is returned and the mutex remains unchanged.‘‘ Fast’’ and
‘‘ recursive’’ mutexes perform no such checks, thus allowing a locked mutex to be unlocked by a thread
other than its owner. This is non-portable behavior and must not be relied upon.

pthread_mutex_destroydestroys a mutex object, freeing the resources it might hold. The mutex must be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated with mutex objects,
thuspthread_mutex_destroyactually does nothing except checking that the mutex is unlocked.

RETURN VALUE
pthread_mutex_init always returns 0. The other mutex functions return 0 on success and a non-zero error
code on error.

ERRORS
Thepthread_mutex_lockfunction returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EDEADLK
the mutex is already locked by the calling thread (‘‘error checking’’ mutexes only).

Thepthread_mutex_unlockfunction returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EPERM
the calling thread does not own the mutex (‘‘ error checking’’ mutexes only).

Thepthread_mutex_destroyfunction returns the following error code on error:

EBUSY
the mutex is currently locked.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_mutexattr_init (3), pthread_mutexattr_setkind_np(3), pthread_cancel(3).

SP/SOS1-Klausur Manual-Auszug 2009-03-27 2

socket(3) socket(3)

NAME
socket − create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domainparameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. Thecurrently understood for-
mats are:

PF_INET ARPA Internet protocols

The socket has the indicatedtype, which specifies the communication semantics. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams. An out-of-
band data transmission mechanism may be supported.A SOCK_DGRAM socket supports datagrams (con-
nectionless, unreliable messages of a fixed (typically small) maximum length).

protocolspecifies a particular protocol to be used with the socket. Normallyonly a single protocol exists to
support a particular socket type within a given protocol family. Howev er, multiple protocols may exist, in
which case a particular protocol must be specified in this manner. The protocol number to use is particular
to the “communication domain” in which communication is to take place. Ifa protocol is specified by the
caller, then it will be packaged into a socket level option request and sent to the underlying protocol layers.

Sockets of typeSOCK_STREAM are full-duplex byte streams, similar to pipes.A stream socket must be in
a connectedstate before any data may be sent or received on it. A connection to another socket is created
with a connect(3N) call. Once connected, data may be transferred usingread(2) andwrite (2) calls or
some variant of thesend(3N) andrecv(3N) calls. When a session has been completed, aclose(2) may be
performed. Out-of-banddata may also be transmitted as described on thesend(3N) manual page and
received as described on therecv(3N) manual page.

The communications protocols used to implement aSOCK_STREAM insure that data is not lost or dupli-
cated. Ifa piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and withETIMEDOUT as the specific code in the global variableerrno. A SIGPIPE signal
is raised if a process sends on a broken stream; this causes naive processes, which do not handle the signal,
to exit.

RETURN VALUES
A −1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesocket() call fails if:

EACCES Permission to create a socket of the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory is available.

SEE ALSO
close(2), read(2), write (2), accept(3N), bind(3N), connect(3N), listen(3N),

SP/SOS1-Klausur Manual-Auszug 2009-03-27 1

