
opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dir ent *readdir(DIR * dir);
int r eaddir_r(DIR * dirp, struct dir ent *entry, struct dir ent ** result);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream.The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION r eaddir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

DESCRIPTION r eaddir_r
The readdir_r() function initializes the structure referenced byentry and storesa pointer to this structure
in result. On successful return, the pointer returned at*resultwill have the samevalue as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

readdir_r() returns 0if successful or an error number to indicate failure.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, ornameis an empty string.

ENOTDIR
nameis not a directory.

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

fileno(3) fileno(3)

NAME
clearerr, feof, ferror, fileno − check and reset stream status

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);
int feof(FILE * stream);
int ferr or(FILE * stream);
int fileno(FILE * stream);

DESCRIPTION
The functionclearerr () clears the end-of-file and error indicators for the stream pointed to bystream.

The functionfeof() tests the end-of-file indicator for the stream pointed to bystream, returning non-zero if
it is set. The end-of-file indicator can only be cleared by the functionclearerr ().

The functionferr or() tests the error indicator for the stream pointed to bystream, returning non-zero if it is
set. Theerror indicator can only be reset by theclearerr () function.

The functionfileno() examines the argumentstreamand returns its integer descriptor.

For non-locking counterparts, seeunlocked_stdio(3).

ERRORS
These functions should not fail and do not set the external variable errno. (However, in casefileno()
detects that its argument is not a valid stream, it must return −1 and seterrno to EBADF.)

CONFORMING T O
The functionsclearerr (), feof(), andferr or() conform to C89 and C99.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdio(3)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

fopen/fdopen(3) fopen/fdopen(3)

NAME
fopen, fdopen − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *f open(const char *path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading.The stream is positioned at the beginning of the file.

r+ Open for reading and writing.The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing.The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file).The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file).The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared.Modes "w" or "w+" do not cause truncation of the file.The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed.The result of applyingfdopen to a
shared memory object is undefined.

RETURN VALUE
Upon successful completionfopen, fdopen and fr eopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or fr eopenwas inv alid.

The fopen, fdopen andfr eopenfunctions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

fread/fwrite(3) fread/fwrite(3)

NAME
fread, fwrite − binary stream input/output

SYNOPSIS
#include <stdio.h>

size_t fread(void * ptr, size_t size, size_t nmemb, FILE * stream);

size_t fwrite(const void * ptr, size_t size, size_t nmemb,
FILE * stream);

DESCRIPTION
The functionfr ead() readsnmembelements of data, eachsizebytes long, from the stream pointed to by
stream, storing them at the location given by ptr.

The functionfwrite () writes nmembelements of data, eachsizebytes long, to the stream pointed to by
stream, obtaining them from the location given by ptr.

For non-locking counterparts, seeunlocked_stdio(3).

RETURN VALUE
fr ead() andfwrite () return the number of items successfully read or written (i.e., not the number of charac-
ters). Ifan error occurs, or the end-of-file is reached, the return value is a short item count (or zero).

fr ead() does not distinguish between end-of-file and error, and callers must usefeof(3) andferr or(3) to
determine which occurred.

CONFORMING T O
C89, POSIX.1-2001.

SEE ALSO
read(2), write (2), feof(3), ferr or(3), unlocked_stdio(3)

COLOPHON
This page is part of release 3.05 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME
pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthr ead_create(pthread_t * thread, pthr ead_attr_t * attr, void * (* start_routine)(void *), void *
arg);

void pthr ead_exit(void *retval);

DESCRIPTION
pthr ead_createcreates a new thread of control that executes concurrently with the calling thread. The new
thread applies the functionstart_routinepassing itarg as first argument. The new thread terminates either
explicitly, by calling pthr ead_exit(3), or implicitly, by returning from thestart_routinefunction. The latter
case is equivalent to callingpthr ead_exit(3) with the result returned bystart_routineas exit code.

Theattr argument specifies thread attributes to be applied to the new thread. Seepthr ead_attr_init(3) for a
complete list of thread attributes. Theattr argument can also beNULL , in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthr ead_exitterminates the execution of the calling thread.All cleanup handlers that have been set for the
calling thread withpthr ead_cleanup_push(3) are executed in reverse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called for all keys that have
non- NULL values associated with them in the calling thread (seepthr ead_key_create(3)). Finally,
execution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using
pthr ead_join(3).

RETURN VALUE
On success, the identifier of the newly created thread is stored in the location pointed by thethreadargu-
ment, and a 0 is returned. On error, a non-zero error code is returned.

Thepthr ead_exitfunction never returns.

ERRORS
EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN
more thanPTHREAD_THREADS_MAX threads are already active.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthr ead_join(3), pthr ead_detach(3), pthr ead_attr_init(3).

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

pthread_mutex(3) pthread_mutex(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock,
pthread_mutex_destroy − operations on mutexes

SYNOPSIS
#include <pthread.h>

pthr ead_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;

pthr ead_mutex_trecmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

pthr ead_mutex_terrchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthr ead_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);

int pthr ead_mutex_lock(pthread_mutex_t *mutex);

int pthr ead_mutex_trylock(pthread_mutex_t *mutex);

int pthr ead_mutex_unlock(pthread_mutex_t *mutex);

int pthr ead_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent
modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one thread). A
mutex can never be owned by two different threads simultaneously. A thread attempting to lock a mutex
that is already locked by another thread is suspended until the owning thread unlocks the mutex first.

pthr ead_mutex_init initializes the mutex object pointed to bymutex according to the mutex attributes
specified inmutexattr. If mutexattr is NULL , default attributes are used instead.

The LinuxThreads implementation supports only one mutex attributes, themutex kind, which is either
‘‘ fast’’, ‘ ‘recursive’’ , or ‘‘error checking’’. The kind of a mutex determines whether it can be locked again
by a thread that already owns it. The default kind is ‘‘f ast’’. Seepthr ead_mutexattr_init(3) for more
information on mutex attributes.

Variables of type pthr ead_mutex_t can also be initialized statically, using the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RECURSIVE_MUTEX_INI-
TIALIZER_NP (for recursive mutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIAL-
IZER_NP (for error checking mutexes).

pthr ead_mutex_locklocks the given mutex. If the mutex is currently unlocked, it becomes locked and
owned by the calling thread, andpthr ead_mutex_lockreturns immediately. If the mutex is already locked
by another thread,pthr ead_mutex_locksuspends the calling thread until the mutex is unlocked.

If the mutex is already locked by the calling thread, the behavior of pthr ead_mutex_lockdepends on the
kind of the mutex. If the mutex is of the ‘‘f ast’’ k ind, the calling thread is suspended until the mutex is
unlocked, thus effectively causing the calling thread to deadlock. If the mutex is of the ‘‘error checking’’
kind, pthr ead_mutex_lockreturns immediately with the error codeEDEADLK . If the mutex is of the
‘‘ recursive’’ k ind, pthr ead_mutex_locksucceeds and returns immediately, recording the number of times
the calling thread has locked the mutex. An equal number ofpthr ead_mutex_unlockoperations must be

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

pthread_mutex(3) pthread_mutex(3)

performed before the mutex returns to the unlocked state.

pthr ead_mutex_trylock behaves identically topthr ead_mutex_lock, except that it does not block the
calling thread if the mutex is already locked by another thread (or by the calling thread in the case of a
‘‘ fast’’ mutex). Instead,pthr ead_mutex_trylockreturns immediately with the error codeEBUSY.

pthr ead_mutex_unlockunlocks the given mutex. The mutex is assumed to be locked and owned by the
calling thread on entrance topthr ead_mutex_unlock. If the mutex is of the ‘‘f ast’’ k ind,
pthr ead_mutex_unlockalways returns it to the unlocked state. If it is of the ‘‘recursive’’ k ind, it decre-
ments the locking count of the mutex (number ofpthr ead_mutex_lockoperations performed on it by the
calling thread), and only when this count reaches zero is the mutex actually unlocked.

On ‘‘error checking’’ mutexes, pthr ead_mutex_unlock actually checks at run-time that the mutex is
locked on entrance, and that it was locked by the same thread that is now calling pthr ead_mutex_unlock.
If these conditions are not met, an error code is returned and the mutex remains unchanged.‘‘ Fast’’ and
‘‘ recursive’’ mutexes perform no such checks, thus allowing a locked mutex to be unlocked by a thread
other than its owner. This is non-portable behavior and must not be relied upon.

pthr ead_mutex_destroy destroys a mutex object, freeing the resources it might hold. The mutex must be
unlocked on entrance. In the LinuxThreads implementation, no resources are associated with mutex objects,
thuspthr ead_mutex_destroy actually does nothing except checking that the mutex is unlocked.

RETURN VALUE
pthr ead_mutex_initalways returns 0. The other mutex functions return 0 on success and a non-zero error
code on error.

ERRORS
Thepthr ead_mutex_lockfunction returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EDEADLK
the mutex is already locked by the calling thread (‘‘error checking’’ mutexes only).

Thepthr ead_mutex_unlockfunction returns the following error code on error:

EINVAL
the mutex has not been properly initialized.

EPERM
the calling thread does not own the mutex (‘‘ error checking’’ mutexes only).

Thepthr ead_mutex_destroy function returns the following error code on error:

EBUSY
the mutex is currently locked.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthr ead_mutexattr_init(3), pthr ead_mutexattr_setkind_np(3), pthr ead_cancel(3).

SP/SOS1-Klausur Manual-Auszug 2010-07-27 2

printf(3) printf(3)

NAME
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf − formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);
int fprintf(FILE * stream, const char * format, ...);
int sprintf(char * str, const char * format, ...);
int snprintf(char * str, size_t size, const char * format, ...);

...

DESCRIPTION
The functions in theprintf () family produce output according to aformat as described below. The func-
tions printf () and vprintf () write output tostdout, the standard output stream;fprintf () and vfprintf ()
write output to the given outputstream; sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char-
acter stringstr.

The functionssnprintf () andvsnprintf () write at mostsizebytes (including the trailing null byte ('\0')) to
str.

The functionsvprintf (), vfprintf (), vsprintf (), vsnprintf () are equivalent to the functionsprintf (),
fprintf (), sprintf (), snprintf (), respectively, except that they are called with ava_list instead of a variable
number of arguments. Thesefunctions do not call theva_endmacro. Becausethey inv oke the va_arg
macro, the value ofap is undefined after the call.Seestdarg(3).

These eight functions write the output under the control of aformat string that specifies how subsequent
arguments (or arguments accessed via the variable-length argument facilities ofstdarg(3)) are converted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the trailing
'\0' used to end output to strings).

The functionssnprintf () andvsnprintf () do not write more thansizebytes (including the trailing '\0').If
the output was truncated due to this limit then the return value is the number of characters (not including
the trailing '\0') which would have been written to the final string if enough space had been available. Thus,
a return value ofsizeor more means that the output was truncated.(See also below under NOTES.)

If an output error is encountered, a negative value is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if any. The format
string is composed of zero or more directives: ordinary characters (not%), which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments. Eachconversion specification is introduced by the character% , and ends with aconversion
specifier. In between there may be (in this order) zero or moreflags, an optional minimumfield width, an
optionalprecisionand an optionallength modifier.

The arguments must correspond properly (after type promotion) with the conversion specifier. By default,
the arguments are used in the order given, where each '*' and each conversion specifier asks for the next
argument (and it is an error if insufficiently many arguments are given). Onecan also specify explicitly
which argument is taken, at each place where an argument is required, by writing "%m$" instead of '%' and
"*m$" instead of '*', where the decimal integer m denotes the position in the argument list of the desired
argument, indexed starting from 1.Thus,

printf("%*d", width, num);

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

printf(3) printf(3)

and

printf("%2$*1$d", width, num);

are equivalent. Thesecond style allows repeated references to the same argument. TheC99 standard does
not include the style using '$', which comes from the Single Unix Specification.If the style using '$' is
used, it must be used throughout for all conversions taking an argument and all width and precision argu-
ments, but it may be mixed with "%%" formats which do not consume an argument. Theremay be no gaps
in the numbers of arguments specified using '$'; for example, if arguments 1 and 3 are specified, argument 2
must also be specified somewhere in the format string.

For some numeric conversions a radix character ("decimal point") or thousands’ grouping character is used.
The actual character used depends on theLC_NUMERIC part of the locale.The POSIX locale uses '.' as
radix character, and does not have a grouping character. Thus,

printf("%'.2f", 1234567.89);

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in "1.234.567,89" in
the da_DK locale.

The conversion specifier
A character that specifies the type of conversion to be applied.An example for a conversion specifier is:

s The const char * argument is expected to be a pointer to an array of character type (pointer to a
string). Charactersfrom the array are written up to (but not including) a terminating null byte
('\0'); if a precision is specified, no more than the number specified are written.If a precision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array, the array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf (3), dprintf (3), scanf(3), setlocale(3), wcrtomb(3), wprintf (3), locale(5)

COLOPHON
This page is part of release 3.05 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP/SOS1-Klausur Manual-Auszug 2010-07-27 2

stat(2) stat(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *path, struct stat * buf);
int fstat(int fd, struct stat * buf);
int lstat(const char *path, struct stat * buf);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

lstat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return information about a file.No permissions are required on the file itself, but — in the
case ofstat() andlstat() — execute (search) permission is required on all of the directories inpath that lead
to the file.

stat() stats the file pointed to bypathand fills inbuf .

lstat() is identical tostat(), except that ifpath is a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptorfd.

All of these system calls return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /*protection */
nlink_t st_nlink; /*number of hard links */
uid_t st_uid; /*user ID of owner */
gid_t st_gid; /*group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for file system I/O */
blkcnt_t st_blocks; /*number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

Thest_dev field describes the device on which this file resides.

Thest_rdev field describes the device that this file (inode) represents.

The st_sizefield gives the size of the file (if it is a regular file or a symbolic link) in bytes.The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocks field indicates the number of blocks allocated to the file, 512-byte units.(This may be
smaller thanst_size/512 when the file has holes.)

Thest_blksizefield gives the "preferred" blocksize for efficient file system I/O.(Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 1

stat(2) stat(2)

Not all of the Linux file systems implement all of the time fields.Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atimefield. (See"noatime" inmount(8).)

The fieldst_atimeis changed by file accesses, for example, byexecve(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes).Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, for example, bymknod(2), truncate(2), utime(2) and
write (2) (of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or dele-
tion of files in that directory. The st_mtimefield is not changed for changes in owner, group, hard link
count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type using thest_modefield:

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) characterdevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

RETURN VALUE
On success, zero is returned.On error, −1 is returned, anderrno is set appropriately.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix ofpath. (See also
path_resolution(7).)

EBADF
fd is bad.

EFAULT
Bad address.

ELOOP
Too many symbolic links encountered while traversing the path.

ENAMET OOLONG
File name too long.

ENOENT
A component of the pathpathdoes not exist, or the path is an empty string.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path is not a directory.

SEE ALSO
access(2), chmod(2), chown(2), fstatat(2), readlink (2), utime(2), capabilities(7), symlink(7)

SP/SOS1-Klausur Manual-Auszug 2010-07-27 2

