
accept(2) accept(2)

NAME
accept − accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr * addr, int * addrlen);

DESCRIPTION
The arguments is a socket that has been created withsocket(3N) and bound to an address withbind(3N),
and that is listening for connections after a call tolisten(3N). Theaccept()function extracts the first con-
nection on the queue of pending connections, creates a new socket with the properties ofs, and allocates a
new file descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is
not marked as non-blocking,accept() blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on the queue,accept()returns an error as
described below. The accept() function uses thenetconfig(4) file to determine theSTREAMSdevice file
name associated withs. This is the device on which the connect indication will be accepted. The accepted
socket,ns, is used to read and write data to and from the socket that connected tons; it is not used to accept
more connections. The original socket (s) remains open for accepting further connections.

The argumentaddr is a result parameter that is filled in with the address of the connecting entity as it is
known to the communications layer. The exact format of theaddr parameter is determined by the domain
in which the communication occurs.

The argumentaddrlen is a value-result parameter. Initially, it contains the amount of space pointed to by
addr; on return it contains the length in bytes of the address returned.

Theaccept()function is used with connection-based socket types, currently withSOCK_STREAM.

It is possible toselect(3C) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a
read. However, this will only indicate when a connect indication is pending; it is still necessary to call
accept().

RETURN VALUES
Theaccept()function returns−1 on error. If it succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
accept()will fail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding tos could not be found in thenetcon-
fig file.

ENOMEM There was insufficient user memory available to complete the operation.

EPROT O A protocol error has occurred; for example, theSTREAMSprotocol stack has not
been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.

SEE ALSO
poll(2), bind(3N), connect(3N), listen(3N), select(3C),socket(3N), netconfig(4), attributes(5), socket(5)

SP-Klausur Manual-Auszug 2017-08-01 1

bind(2) bind(2)

NAME
bind − bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION
bind() assigns a name to an unnamed socket. Whena socket is created withsocket(3N), it exists in a name
space (address family) but has no name assigned.bind() requests that the name pointed to byname be
assigned to the socket.

RETURN VALUES
If the bind is successful,0 is returned.A return value of−1 indicates an error, which is further specified in
the globalerrno.

ERRORS
Thebind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficientSTREAMSresources for the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in theUNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in
name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname inname.

ENOENT A component of the path prefix of the pathname inname does not exist.

ENOTDIR A component of the path prefix of the pathname inname is not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO
unlink (2), socket(3N), attributes(5), socket(5)

NOTES
Binding a name in theUNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (usingunlink (2)).

The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2017-08-01 1

opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred. It is
safe to usereaddir() inside threads if the pointers passed asdir are created by distinct calls toopendir().

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirent structure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file; not supported

by all filesystem types */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

ERRORS
EACCES

Permission denied.

ENOENT
Directory does not exist, orname is an empty string.

ENOTDIR
name is not a directory.

SP-Klausur Manual-Auszug 2017-08-01 1

fopen/fdopen/fileno(3) fopen/fdopen/fileno(3)

NAME
fopen, fdopen, fileno − stream open functions

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * path, const char *mode);
FILE *fdopen(int fildes, const char *mode);
int fileno(FILE * stream);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to bypathand associates a stream with
it.

The argumentmodepoints to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated.The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file).The file is created if it does not exist. Thestream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The modeof the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging tofildes, and the error and end-of-file
indicators are cleared.Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created byfdopen is closed. The result of applyingfdopen to a
shared memory object is undefined.

The functionfileno() examines the argumentstreamand returns its integer descriptor.

RETURN VALUE
Upon successful completionfopen, fdopen and freopen return aFILE pointer. Otherwise,NULL is
returned and the global variableerrno is set to indicate the error.

ERRORS
EINVAL

Themodeprovided tofopen, fdopen, or freopenwas inv alid.

The fopen, fdopen andfreopen functions may also fail and seterrno for any of the errors specified for the
routinemalloc(3).

Thefopen function may also fail and seterrno for any of the errors specified for the routineopen(2).

Thefdopen function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

SEE ALSO
open(2), fclose(3), fileno(3)

SP-Klausur Manual-Auszug 2017-08-01 1

getc/fgets/putc/fputs(3) getc/fgets/putc/fputs(3)

NAME
fgetc, fgets, getc, getchar, fputc, fputs, putc, putchar− input and output of characters and strings

SYNOPSIS
#include <stdio.h>

int fgetc(FILE *stream);
char *fgets(char *s, int size, FILE *stream);
int getc(FILE *stream);
int getchar(void);
int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

DESCRIPTION
fgetc() reads the next character fromstream and returns it as anunsigned char cast to anint, or EOF on
end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluatesstream more
than once.

getchar() is equivalent togetc(stdin).

fgets() reads in at most one less thansize characters fromstream and stores them into the buffer pointed to
by s. Reading stops after anEOF or a newline. If a newline is read, it is stored into the buffer. A ’\0’ is
stored after the last character in the buffer.

fputc() writes the characterc, cast to anunsigned char, to stream.

fputs() writes the strings to stream, without its terminating null byte ('\0').

putc() is equivalent tofputc() except that it may be implemented as a macro which evaluatesstream more
than once.

putchar(c); is equivalent toputc(c, stdout).

Calls to the functions described here can be mixed with each other and with calls to other output functions
from thestdio library for the same output stream.

RETURN VALUE
fgetc(), getc() andgetchar() return the character read as anunsigned char cast to anint or EOF on end of
file or error.

fgets() returnss on success, and NULL on error or when end of file occurs while no characters have been
read. fputc(), putc() andputchar() return the character written as anunsigned char cast to anint or EOF
on error.

fputs() returns a nonnegative number on success, orEOF on error.

SEE ALSO
read(2), write(2), ferror(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline(3), getwchar(3),
scanf(3), ungetwc(3), write(2), ferror(3), fopen(3), fputwc(3), fputws(3), fseek(3), fwrite(3), gets(3),
putwchar(3), scanf(3), unlocked_stdio(3)

SP-Klausur Manual-Auszug 2017-08-01 1

socket(2) / ipv6(7) socket(2) / ipv6(7)

NAME
ipv6, PF_INET6 − Linux IPv6 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp6_socket = socket(PF_INET6, SOCK_STREAM, 0);
raw6_socket = socket(PF_INET6, SOCK_RAW, protocol);
udp6_socket = socket(PF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION
Linux 2.2 optionally implements the Internet Protocol, version 6. This man page contains a description of
the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD
sockets interface; seesocket(7).

The IPv6 API aims to be mostly compatible with theip(7) v4 API. Only differences are described in this
man page.

To bind anAF_INET6 socket to any process the local address should be copied from thein6addr_anyvari-
able which hasin6_addr type. In static initializationsIN6ADDR_ANY_INIT may also be used, which
expands to a constant expression. Bothof them are in network order.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-
gram only needs only to support this API type to support both protocols. This is handled transparently by
the address handling functions in libc.

IPv4 and IPv6 share the local port space.When you get an IPv4 connection or packet to a IPv6 socket its
source address will be mapped to v6 and it will be mapped to v6.

Address Format
struct sockaddr_in6 {

uint16_t sin6_family; /* AF_INET6 */
uint16_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id;/* Scope ID (new in 2.4) */

};

struct in6_addr {
unsigned chars6_addr[16]; /*IPv6 address */

};

sin6_familyis always set toAF_INET6 ; sin6_portis the protocol port (seesin_portin ip(7)); sin6_flowinfo
is the IPv6 flow identifier;sin6_addris the 128-bit IPv6 address.sin6_scope_idis an ID of depending of
on the scope of the address. It is new in Linux 2.4. Linux only supports it for link scope addresses, in that
casesin6_scope_idcontains the interface index (seenetdevice(7))

RETURN VALUES
−1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

NOTES
The sockaddr_in6structure is bigger than the genericsockaddr. Programs that assume that all address
types can be stored safely in astruct sockaddr need to be changed to usestruct sockaddr_storage for that
instead.

SEE ALSO
cmsg(3), ip(7)

SP-Klausur Manual-Auszug 2017-08-01 1

listen(2) listen(2)

NAME
listen − listen for connections on a socket

SYNOPSIS
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int listen(int sockfd , int backlog);

DESCRIPTION
listen() marks the socket referred to bysockfd as a passive socket, that is, as a socket that will be used to
accept incoming connection requests usingaccept(2).

The sockfd argument is a file descriptor that refers to a socket of typeSOCK_STREAM or SOCK_SEQ-
PA CKET.

The backlog argument defines the maximum length to which the queue of pending connections forsockfd
may grow. If a connection request arrives when the queue is full, the client may receive an error with an
indication ofECONNREFUSED or, if the underlying protocol supports retransmission, the request may be
ignored so that a later reattempt at connection succeeds.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

ERRORS
EADDRINUSE

Another socket is already listening on the same port.

EBADF
The argumentsockfd is not a valid descriptor.

ENOTSOCK
The argumentsockfd is not a socket.

NOTES
To accept connections, the following steps are performed:

1. A socket is created withsocket(2).

2. Thesocket is bound to a local address usingbind(2), so that other sockets may beconnect(2)ed
to it.

3. A willingness to accept incoming connections and a queue limit for incoming connections are
specified withlisten().

4. Connectionsare accepted withaccept(2).

If the backlog argument is greater than the value in/proc/sys/net/core/somaxconn, then it is silently trun-
cated to that value; the default value in this file is 128.

EXAMPLE
Seebind(2).

SEE ALSO
accept(2), bind(2), connect(2), socket(2), socket(7)

SP-Klausur Manual-Auszug 2017-08-01 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

DESCRIPTION
calloc() allocates memory for an array ofnmemb elements ofsize bytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocatessize bytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to byptr, which must have been returned by a previous call tomal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined behaviour
occurs. Ifptr is NULL, no operation is performed.

realloc() changes the size of the memory block pointed to byptr to size bytes. Thecontents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized.If ptr
is NULL, the call is equivalent tomalloc(size); if size is equal to zero, the call is equivalent to free(ptr).
Unlessptr is NULL, it must have been returned by an earlier call tomalloc(), calloc() or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, orNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different fromptr, or NULL if the request fails. Ifsize was equal to 0, either NULL or a
pointer suitable to be passed tofree() is returned.If realloc() fails the original block is left untouched - it is
not freed or moved.

CONFORMING TO
ANSI-C

SEE ALSO
brk(2), posix_memalign(3)

SP-Klausur Manual-Auszug 2017-08-01 1

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME
pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t * thread , pthread_attr_t * attr, void * (*start_routine)(void *), void *
arg);

void pthread_exit(void *retval);

DESCRIPTION
pthread_create creates a new thread of control that executes concurrently with the calling thread. The new
thread applies the functionstart_routine passing itarg as first argument. The new thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from thestart_routine function. The latter
case is equivalent to callingpthread_exit(3) with the result returned bystart_routine as exit code.

Theattr argument specifies thread attributes to be applied to the new thread. Seepthread_attr_init(3) for a
complete list of thread attributes. Theattr argument can also beNULL, in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthread_exit terminates the execution of the calling thread.All cleanup handlers that have been set for the
calling thread withpthread_cleanup_push(3) are executed in reverse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called for all keys that have
non- NULL values associated with them in the calling thread (seepthread_key_create(3)). Finally, exe-
cution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE
On success, the identifier of the newly created thread is stored in the location pointed by thethread argu-
ment, and a 0 is returned. On error, a non-zero error code is returned.

Thepthread_exit function never returns.

ERRORS
EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN
more thanPTHREAD_THREADS_MAX threads are already active.

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_join(3), pthread_detach(3), pthread_attr_init(3).

SP-Klausur Manual-Auszug 2017-08-01 1

pthread_detach(3) pthread_detach(3)

NAME
pthread_detach − put a running thread in the detached state

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t th);

DESCRIPTION
pthread_detach put the threadth in the detached state. This guarantees that the memory resources con-
sumed byth will be freed immediately whenth terminates. However, this prevents other threads from syn-
chronizing on the termination ofth usingpthread_join.

A thread can be created initially in the detached state, using thedetachstate attribute topthread_create(3).
In contrast,pthread_detach applies to threads created in the joinable state, and which need to be put in the
detached state later.

After pthread_detach completes, subsequent attempts to performpthread_join on th will f ail. If another
thread is already joining the threadth at the timepthread_detach is called,pthread_detach does nothing
and leaves th in the joinable state.

RETURN VALUE
On success, 0 is returned. On error, a non-zero error code is returned.

ERRORS
ESRCH

No thread could be found corresponding to that specified byth

EINVAL
the threadth is already in the detached state

AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO
pthread_create(3), pthread_join(3), pthread_attr_setdetachstate(3).

SP-Klausur Manual-Auszug 2017-08-01 1

sigaction(2) sigaction(2)

NAME
sigaction − POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
Thesigaction system call is used to change the action taken by a process on receipt of a specific signal.

signumspecifies the signal and can be any valid signal exceptSIGKILL andSIGSTOP.

If act is non−null, the new action for signalsignumis installed fromact. If oldact is non−null, the previous
action is saved in oldact.

Thesigaction structure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to bothsa_handlerandsa_sigaction.

The sa_restorerelement is obsolete and should not be used.POSIX does not specify asa_restorerele-
ment.

sa_handlerspecifies the action to be associated withsignumand may beSIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_maskgives a mask of signals which should be blocked during execution of the signal handler. In addi-
tion, the signal which triggered the handler will be blocked, unless theSA_NODEFER or SA_NOMASK
flags are used.

sa_flagsspecifies a set of flags which modify the behaviour of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signumis SIGCHLD, do not receive notification when child processes stop (i.e., when
child processes receive one ofSIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigaction returns 0 on success and -1 on error.

ERRORS
EINVAL

An invalid signal was specified. This will also be generated if an attempt is made to change the
action forSIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO
kill(1), kill(2), killpg(2), pause(2), sigsetops(3),

SP-Klausur Manual-Auszug 2017-08-01 1

sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask − change and/or examine caller’s signal mask
sigsuspend − install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

int sigsuspend(const sigset_t *set);

DESCRIPTION sigprocmask
The sigprocmask() function is used to examine and/or change the caller’s signal mask. If the value is
SIG_BLOCK , the set pointed to by the argumentset is added to the current signal mask.If the value is
SIG_UNBLOCK , the set pointed by the argumentset is removed from the current signal mask. If the value
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argumentset. If the
argumentoset is notNULL , the previous mask is stored in the space pointed to byoset. If the value of the
argumentset is NULL , the valuehow is not significant and the caller’s signal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call tosigprocmask(), at least one of those signals will
be delivered before the call tosigprocmask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. Seesigaction(2).

If sigprocmask()fails, the caller’s signal mask is not changed.

RETURN VALUES
On success,sigprocmask()returns0. On failure, it returns−1 and setserrno to indicate the error.

ERRORS
sigprocmask()fails if any of the following is true:

EFAULT set or oset points to an illegal address.

EINVAL The value of thehow argument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend()replaces the caller’s signal mask with the set of signals pointed to by the argumentset and
then suspends the caller until delivery of a signal whose action is either to execute a signal catching func-
tion or to terminate the process.

If the action is to terminate the process,sigsuspend()does not return.If the action is to execute a signal
catching function,sigsuspend()returns after the signal catching function returns. On return, the signal
mask is restored to the set that existed before the call tosigsuspend().

It is not possible to block those signals that cannot be ignored (seesignal(5)); this restriction is silently
imposed by the system.

RETURN VALUES
Sincesigsuspend()suspends process execution indefinitely, there is no successful completion return value.
On failure, it returns −1 and setserrno to indicate the error.

ERRORS
sigsuspend()fails if either of the following is true:

EFAULT set points to an illegal address.

EINTR A signal is caught by the calling process and control is returned from the signal catching
function.

SEE ALSO
sigaction(2), sigsetops(3C),

SP-Klausur Manual-Auszug 2017-08-01 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION
These functions manipulatesigset_t data types, representing the set of signals supported by the implemen-
tation.

sigemptyset()initializes the set pointed to byset to exclude all signals defined by the system.

sigfillset() initializes the set pointed to byset to include all signals defined by the system.

sigaddset()adds the individual signal specified by the value ofsigno to the set pointed to byset.

sigdelset()deletes the individual signal specified by the value ofsigno from the set pointed to byset.

sigismember()checks whether the signal specified by the value ofsigno is a member of the set pointed to
by set.

Any object of typesigset_t must be initialized by applying eithersigemptyset()or sigfillset() before
applying any other operation.

RETURN VALUES
Upon successful completion, thesigismember()function returns a value of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of −1 is returned anderrno is set to indicate the error.

ERRORS
sigaddset(), sigdelset(), andsigismember()will fail if the following is true:

EINVAL The value of thesigno argument is not a valid signal number.

sigfillset()will fail if the following is true:

EFAULT Theset argument specifies an invalid address.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attributes(5), signal(5)

SP-Klausur Manual-Auszug 2018-08-01 1

stat(2) stat(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char * path, struct stat *buf);
int fstat(int fd , struct stat *buf);
int lstat(const char *path, struct stat *buf);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

lstat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return information about a file. No permissions are required on the file itself, but — in the
case ofstat() andlstat() — execute (search) permission is required on all of the directories inpath that lead
to the file.

stat() stats the file pointed to bypath and fills inbuf .

lstat() is identical tostat(), except that ifpath is a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptorfd.

All of these system calls return astat structure, which contains the following fields:

struct stat {
dev_t st_dev; /*ID of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /*protection */
nlink_t st_nlink; /*number of hard links */
uid_t st_uid; /*user ID of owner */
gid_t st_gid; /*group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for file system I/O */
blkcnt_t st_blocks; /*number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

Thest_dev field describes the device on which this file resides.

Thest_rdev field describes the device that this file (inode) represents.

The st_size field gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocks field indicates the number of blocks allocated to the file, 512-byte units.(This may be
smaller thanst_size/512 when the file has holes.)

Thest_blksize field gives the "preferred" blocksize for efficient file system I/O. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2017-08-01 1

stat(2) stat(2)

Not all of the Linux file systems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atime field. (See"noatime" inmount(8).)

The fieldst_atime is changed by file accesses, for example, byexecve(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtime is changed by file modifications, for example, bymknod(2), truncate(2), utime(2) and
write(2) (of more than zero bytes).Moreover, st_mtime of a directory is changed by the creation or dele-
tion of files in that directory. The st_mtime field is not changed for changes in owner, group, hard link
count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type using thest_mode field:

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) characterdevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix ofpath. (See also
path_resolution(7).)

EBADF
fd is bad.

EFAULT
Bad address.

ELOOP
Too many symbolic links encountered while traversing the path.

ENAMETOOLONG
File name too long.

ENOENT
A component of the pathpath does not exist, or the path is an empty string.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path is not a directory.

SEE ALSO
access(2), chmod(2), chown(2), fstatat(2), readlink(2), utime(2), capabilities(7), symlink(7)

SP-Klausur Manual-Auszug 2017-08-01 2

strcmp(3) strcmp(3)

NAME
strcmp, strncmp − compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
The strcmp() function compares the two strings s1 and s2. It returns an integer less than, equal to, or
greater than zero ifs1 is found, respectively, to be less than, to match, or be greater thans2.

Thestrncmp() function is similar, except it only compares the first (at most)n characters ofs1 ands2.

RETURN VALUE
Thestrcmp() andstrncmp() functions return an integer less than, equal to, or greater than zero ifs1 (or the
first n bytes thereof) is found, respectively, to be less than, to match, or be greater thans2.

CONFORMING TO
SVr4, 4.3BSD, C89, C99.

SEE ALSO
bcmp(3), memcmp(3), strcasecmp(3), strcoll(3), strncasecmp(3), wcscmp(3), wcsncmp(3)

SP-Klausur Manual-Auszug 2017-08-01 1

