
bbuffer(3) bbuffer(3)

NAME

bbCreate, bbPut, bbGet, bbDestroy − A synchronized bounded-buffer implementation

SYNOPSIS

#include ’’bbuffer.h’’

BNDBUF *bbCreate(size_t size);

void bbPut(BNDBUF * bb, void * value);

void* bbGet(BNDBUF * bb);

void bbDestroy(BNDBUF * bb);

DESCRIPTION

Bounded-buffer implementation of a FIFO queue. Manages void* and supports multiple concurrent read-
ers and writers. Provides the following functions:

bbCreate() creates a new bounded buffer for up to size elements. If an error occurs during the initializa-
tion, the implementation frees all resources already allocated by then and returns NULL.

bbPut() stores the value in the bounded buffer. If the buffer is full (i.e., it currently contains size elements),
the call to bbPut() blocks until the value can be stored.

bbGet() returns the next value from the bounded buffer. If the buffer is empty, the call blocks until a value
is available.

Both bbPut() and bbGet() are synchronized internally and thus can be called concurrently without the need
for further synchronization.

bbDestroy() releases any resources related to the bounded buffer itself. It does not call free() on the ele-
ments stored in the buffer.

RETURN VALUE

bbCreate() returns a pointer to the allocated bounded buffer, or NULL if the request fails.

bbPut() returns no value.

bbGet() returns the next value stored in the bounded buffer.

bbDestroy() returns no value.

GSP-Klausur Manual-Auszug 2018-02-21 1

feof/ferror/fileno(3) feof/ferror/fileno(3)

NAME

clearerr, feof, ferror, fileno − check and reset stream status

SYNOPSIS

#include <stdio.h>

void clearerr(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

int fileno(FILE *stream);

DESCRIPTION

The function clearerr() clears the end-of-file and error indicators for the stream pointed to by stream.

The function feof() tests the end-of-file indicator for the stream pointed to by stream, returning non-zero if
it is set. The end-of-file indicator can only be cleared by the function clearerr().

The function ferror() tests the error indicator for the stream pointed to by stream, returning non-zero if it is
set. The error indicator can only be reset by the clearerr() function.

The function fileno() examines the argument stream and returns its integer descriptor.

For non-locking counterparts, see unlocked_stdio(3).

ERRORS

These functions should not fail and do not set the external variable errno. (However, in case fileno()
detects that its argument is not a valid stream, it must return −1 and set errno to EBADF.)

CONFORMING TO

The functions clearerr(), feof(), and ferror() conform to C89 and C99.

SEE ALSO

open(2), fdopen(3), stdio(3), unlocked_stdio(3)

GSP-Klausur Manual-Auszug 2018-02-21 1

fopen/fdopen/fileno(3) fopen/fdopen/fileno(3)

NAME

fopen, fdopen, fileno − stream open functions

SYNOPSIS

#include <stdio.h>

FILE *fopen(const char * path, const char *mode);

FILE *fdopen(int fildes, const char *mode);

int fileno(FILE *stream);

DESCRIPTION

The fopen function opens the file whose name is the string pointed to by path and associates a stream with
it.

The argument mode points to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated. The
stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The mode of the stream
(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.
The file position indicator of the new stream is set to that belonging to fildes, and the error and end-of-file
indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not
dup’ed, and will be closed when the stream created by fdopen is closed. The result of applying fdopen to a
shared memory object is undefined.

The function fileno() examines the argument stream and returns its integer descriptor.

RETURN VALUE

Upon successful completion fopen, fdopen and freopen return a FILE pointer. Otherwise, NULL is
returned and the global variable errno is set to indicate the error.

ERRORS

EINVAL

The mode provided to fopen, fdopen, or freopen was inv alid.

The fopen, fdopen and freopen functions may also fail and set errno for any of the errors specified for the
routine malloc(3).

The fopen function may also fail and set errno for any of the errors specified for the routine open(2).

The fdopen function may also fail and set errno for any of the errors specified for the routine fcntl(2).

SEE ALSO

open(2), fclose(3), fileno(3)

GSP-Klausur Manual-Auszug 2018-02-21 1

fread/fwrite(3) fread/fwrite(3)

NAME

fread, fwrite − binary stream input/output

SYNOPSIS

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);

DESCRIPTION

The function fread() reads nmemb elements of data, each size bytes long, from the stream pointed to by
stream, storing them at the location given by ptr.

The function fwrite() writes nmemb elements of data, each size bytes long, to the stream pointed to by
stream, obtaining them from the location given by ptr.

For non-locking counterparts, see unlocked_stdio(3).

RETURN VALUE

fread() and fwrite() return the number of items successfully read or written (i.e., not the number of charac-
ters). If an error occurs, or the end-of-file is reached, the return value is a short item count (or zero).

fread() does not distinguish between end-of-file and error, and callers must use feof(3) and ferror(3) to
determine which occurred.

CONFORMING TO

C89, POSIX.1-2001.

SEE ALSO

read(2), write(2), feof(3), ferror(3), unlocked_stdio(3)

COLOPHON

This page is part of release 3.05 of the Linux man-pages project. A description of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

GSP-Klausur Manual-Auszug 2018-02-21 1

malloc(3) malloc(3)

NAME

calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

DESCRIPTION

calloc() allocates memory for an array of nmemb elements of size bytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocates size bytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to by ptr, which must have been returned by a previous call to mal-

loc(), calloc() or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour
occurs. If ptr is NULL, no operation is performed.

realloc() changes the size of the memory block pointed to by ptr to size bytes. The contents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized. If ptr

is NULL, the call is equivalent to malloc(size); if size is equal to zero, the call is equivalent to free(ptr).

Unless ptr is NULL, it must have been returned by an earlier call to malloc(), calloc() or realloc().

RETURN VALUE

For calloc() and malloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, or NULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different from ptr, or NULL if the request fails. If size was equal to 0, either NULL or a
pointer suitable to be passed to free() is returned. If realloc() fails the original block is left untouched - it is
not freed or moved.

CONFORMING TO

ANSI-C

SEE ALSO

brk(2), posix_memalign(3)

GSP-Klausur Manual-Auszug 2018-02-21 1

opendir/readdir(3) opendir/readdir(3)

NAME

opendir − open a directory / readdir − read a directory

SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);

DESCRIPTION opendir

The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE

The opendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir

The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to by dir. It returns NULL on reaching the end-of-file or if an error occurred. It is
safe to use readdir() inside threads if the pointers passed as dir are created by distinct calls to opendir().

The data returned by readdir() is overwritten by subsequent calls to readdir() for the same directory
stream.

The dirent structure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file; not supported by all filesystem types */
char d_name[256]; /* filename */

};

RETURN VALUE

The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

ERRORS

EACCES

Permission denied.

ENOENT

Directory does not exist, or name is an empty string.

ENOTDIR

name is not a directory.

GSP-Klausur Manual-Auszug 2018-02-21 1

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME

pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t * thread , pthread_attr_t * attr, void * (*start_routine)(void *), void *

arg);

void pthread_exit(void *retval);

DESCRIPTION

pthread_create creates a new thread of control that executes concurrently with the calling thread. The new
thread applies the function start_routine passing it arg as first argument. The new thread terminates either
explicitly, by calling pthread_exit(3), or implicitly, by returning from the start_routine function. The latter
case is equivalent to calling pthread_exit(3) with the result returned by start_routine as exit code.

The attr argument specifies thread attributes to be applied to the new thread. See pthread_attr_init(3) for a
complete list of thread attributes. The attr argument can also be NULL, in which case default attributes are
used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthread_exit terminates the execution of the calling thread. All cleanup handlers that have been set for the
calling thread with pthread_cleanup_push(3) are executed in reverse order (the most recently pushed han-
dler is executed first). Finalization functions for thread-specific data are then called for all keys that have
non- NULL values associated with them in the calling thread (see pthread_key_create(3)). Finally, exe-
cution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using
pthread_join(3).

RETURN VALUE

On success, the identifier of the newly created thread is stored in the location pointed by the thread argu-
ment, and a 0 is returned. On error, a non-zero error code is returned.

The pthread_exit function never returns.

ERRORS

EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN

more than PTHREAD_THREADS_MAX threads are already active.

AUTHOR

Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO

pthread_join(3), pthread_detach(3), pthread_attr_init(3).

GSP-Klausur Manual-Auszug 2018-02-21 1

pthread_detach(3) pthread_detach(3)

NAME

pthread_detach − put a running thread in the detached state

SYNOPSIS

#include <pthread.h>

int pthread_detach(pthread_t th);

DESCRIPTION

pthread_detach put the thread th in the detached state. This guarantees that the memory resources con-
sumed by th will be freed immediately when th terminates. However, this prevents other threads from syn-
chronizing on the termination of th using pthread_join.

A thread can be created initially in the detached state, using the detachstate attribute to pthread_create(3).
In contrast, pthread_detach applies to threads created in the joinable state, and which need to be put in the
detached state later.

After pthread_detach completes, subsequent attempts to perform pthread_join on th will fail. If another
thread is already joining the thread th at the time pthread_detach is called, pthread_detach does nothing
and leaves th in the joinable state.

RETURN VALUE

On success, 0 is returned. On error, a non-zero error code is returned.

ERRORS

ESRCH

No thread could be found corresponding to that specified by th

EINVAL

the thread th is already in the detached state

AUTHOR

Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO

pthread_create(3), pthread_join(3), pthread_attr_setdetachstate(3).

GSP-Klausur Manual-Auszug 2018-02-21 1

pthread_self(3) pthread_self(3)

NAME

pthread_self − obtain ID of the calling thread

SYNOPSIS

#include <pthread.h>

pthread_t pthread_self(void);

Compile and link with −pthread.

DESCRIPTION

The pthread_self() function returns the ID of the calling thread. This is the same value that is returned in
*thread in the pthread_create(3) call that created this thread.

RETURN VALUE

This function always succeeds, returning the calling thread’s ID.

ERRORS

This function always succeeds.

NOTES

POSIX.1 allows an implementation wide freedom in choosing the type used to represent a thread ID; for
example, representation using either an arithmetic type or a structure is permitted. Therefore, variables of
type pthread_t can’t portably be compared using the C equality operator (==); use pthread_equal(3)
instead.

Thread identifiers should be considered opaque: any attempt to use a thread ID other than in pthreads calls
is nonportable and can lead to unspecified results.

Thread IDs are guaranteed to be unique only within a process. A thread ID may be reused after a termi-
nated thread has been joined, or a detached thread has terminated.

The thread ID returned by pthread_self() is not the same thing as the kernel thread ID returned by a call to
gettid(2).

SEE ALSO

pthread_create(3), pthread_equal(3), pthreads(7)

GSP-Klausur Manual-Auszug 2018-02-21 1

printf(3) printf(3)

NAME

printf, fprintf, sprintf, snprintf − formatted output conversion

SYNOPSIS

#include <stdio.h>

int printf(const char * format, ...);

int fprintf(FILE *stream, const char * format, ...);

int sprintf(char *str, const char * format, ...);

int snprintf(char *str, size_t size, const char * format, ...);

DESCRIPTION

The functions in the printf() family produce output according to a format as described below. The function
printf() writes output to stdout, the standard output stream; fprintf() writes output to the given output
stream; sprintf() and snprintf(), write to the character string str.

The function snprintf() writes at most size bytes (including the trailing null byte ('\0')) to str.

These functions write the output under the control of a format string that specifies how subsequent argu-
ments are converted for output.

Format of the format string

The format string is a character string, beginning and ending in its initial shift state, if any. The format
string is composed of zero or more directives: ordinary characters (not %), which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments. Each conversion specification is introduced by the character %, and ends with a conversion

specifier. In between there may be (in this order) zero or more flags, an optional minimum field width, an
optional precision and an optional length modifier.

The conversion specifier

A character that specifies the type of conversion to be applied. An example for a conversion specifier is:

d, i The int argument is converted to signed decimal notation. The precision, if any, giv es the mini-
mum number of digits that must appear; if the converted value requires fewer digits, it is padded
on the left with zeros. The default precision is 1.

o, u, x, X

The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal (x and X) notation.

c The int argument is converted to an unsigned char , and the resulting character is written.

s The const char * argument is expected to be a pointer to an array of character type (pointer to a
string). Characters from the array are written up to (but not including) a terminating null byte
('\0'); if a precision is specified, no more than the number specified are written.

RETURN VALUE

Upon successful return, these functions return the number of characters printed (not including the trailing
'\0' used to end output to strings). snprintf() does not write more than size bytes (including the terminating
null byte ('\0')). If the output was truncated due to this limit, then the return value is the number of charac-
ters (excluding the terminating null byte) which would have been written to the final string if enough space
had been available. Thus, Ba return value of size or more means that the output was truncated.

If an output error is encountered, a negative value is returned.

GSP-Klausur Manual-Auszug 2018-02-21 1

stat(2) stat(2)

NAME

stat, fstat, lstat − get file status

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

int stat(const char *path, struct stat *buf);

int fstat(int fd , struct stat *buf);

int lstat(const char *path, struct stat *buf);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lstat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

These functions return information about a file. No permissions are required on the file itself, but — in the
case of stat() and lstat() — execute (search) permission is required on all of the directories in path that lead
to the file.

stat() stats the file pointed to by path and fills in buf .

lstat() is identical to stat(), except that if path is a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical to stat(), except that the file to be stat-ed is specified by the file descriptor fd .

All of these system calls return a stat structure, which contains the following fields:

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* inode number */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for file system I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The st_dev field describes the device on which this file resides.

The st_rdev field describes the device that this file (inode) represents.

The st_size field gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocks field indicates the number of blocks allocated to the file, 512-byte units. (This may be
smaller than st_size/512 when the file has holes.)

The st_blksize field gives the "preferred" blocksize for efficient file system I/O. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

GSP-Klausur Manual-Auszug 2018-02-21 1

stat(2) stat(2)

Not all of the Linux file systems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of the st_atime field. (See "noatime" in mount(8).)

The field st_atime is changed by file accesses, for example, by execve(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, like mmap(2), may or may not update st_atime.

The field st_mtime is changed by file modifications, for example, by mknod(2), truncate(2), utime(2) and
write(2) (of more than zero bytes). Moreover, st_mtime of a directory is changed by the creation or dele-
tion of files in that directory. The st_mtime field is not changed for changes in owner, group, hard link
count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type using the st_mode field:

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) character device?

S_ISBLK(m) block device?

S_ISFIFO(m) FIFO (named pipe)?

S_ISLNK(m) symbolic link? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

RETURN VALUE

On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS

EACCES

Search permission is denied for one of the directories in the path prefix of path. (See also
path_resolution(7).)

EBADF

fd is bad.

EFAULT

Bad address.

ELOOP

Too many symbolic links encountered while traversing the path.

ENAMETOOLONG

File name too long.

ENOENT

A component of the path path does not exist, or the path is an empty string.

ENOMEM

Out of memory (i.e., kernel memory).

ENOTDIR

A component of the path is not a directory.

SEE ALSO

access(2), chmod(2), chown(2), fstatat(2), readlink(2), utime(2), capabilities(7), symlink(7)

GSP-Klausur Manual-Auszug 2018-02-21 2

string(3) string(3)

NAME

strcat, strchr, strcmp, strcpy, strdup, strlen, strncat, strncmp, strncpy, strstr, strtok − string operations

SYNOPSIS

#include <string.h>

char *strcat(char *dest, const char *src);

Append the string src to the string dest, returning a pointer dest.

char *strchr(const char *s, int c);

Return a pointer to the first occurrence of the character c in the string s.

int strcmp(const char *s1, const char *s2);

Compare the strings s1 with s2. It returns an integer less than, equal to, or greater than zero if s1 is
found, respectively, to be less than, to match, or be greater than s2.

char *strcpy(char *dest, const char *src);

Copy the string src to dest, returning a pointer to the start of dest.

char *strdup(const char *s);

Return a duplicate of the string s in memory allocated using malloc(3).

size_t strlen(const char *s);

Return the length of the string s.

char *strncat(char *dest, const char *src, size_t n);

Append at most n characters from the string src to the string dest, returning a pointer to dest.

int strncmp(const char *s1, const char *s2, size_t n);

Compare at most n bytes of the strings s1 and s2. It returns an integer less than, equal to, or
greater than zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

char *strncpy(char *dest, const char *src, size_t n);

Copy at most n bytes from string src to dest, returning a pointer to the start of dest.

char *strstr(const char *haystack, const char *needle);

Find the first occurrence of the substring needle in the string haystack, returning a pointer to the
found substring.

char *strtok(char *s, const char *delim);

Extract tokens from the string s that are delimited by one of the bytes in delim.

DESCRIPTION

The string functions perform operations on null-terminated strings.

GSP-Klausur Manual-Auszug 2018-02-21 1

