
accept(2) accept(2)

NAME

accept − accept a connection on a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

DESCRIPTION

The argument s is a socket that has been created with socket(3N) and bound to an address with bind(3N),

and that is listening for connections after a call to listen(3N). The accept() function extracts the first con-

nection on the queue of pending connections, creates a new socket with the properties of s, and allocates a

new file descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is

not marked as non-blocking, accept() blocks the caller until a connection is present. If the socket is

marked as non-blocking and no pending connections are present on the queue, accept() returns an error as

described below. The accept() function uses the netconfig(4) file to determine the STREAMS device file

name associated with s. This is the device on which the connect indication will be accepted. The accepted

socket, ns, is used to read and write data to and from the socket that connected to ns; it is not used to accept

more connections. The original socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting entity as it is

known to the communications layer. The exact format of the addr parameter is determined by the domain

in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of space pointed to by

addr; on return it contains the length in bytes of the address returned.

The accept() function is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept() by selecting or polling it for a

read. However, this will only indicate when a connect indication is pending; it is still necessary to call

accept().

RETURN VALUES

The accept() function returns −1 on error. If it succeeds, it returns a non-negative integer that is a descrip-

tor for the accepted socket.

ERRORS

accept() will fail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding to s could not be found in the netcon-

fig file.

ENOMEM There was insufficient user memory available to complete the operation.

EPROT O A protocol error has occurred; for example, the STREAMS protocol stack has not

been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be

accepted.

SEE ALSO

poll(2), bind(3N), connect(3N), listen(3N), select(3C), socket(3N), netconfig(4), attributes(5), socket(5)

SP-Klausur Manual-Auszug 2018-07-17 1

bind(2) bind(2)

NAME

bind − bind a name to a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION

bind() assigns a name to an unnamed socket. When a socket is created with socket(3N), it exists in a name

space (address family) but has no name assigned. bind() requests that the name pointed to by name be

assigned to the socket.

RETURN VALUES

If the bind is successful, 0 is returned. A return value of −1 indicates an error, which is further specified in

the global errno.

ERRORS

The bind() call will fail if:

EACCES The requested address is protected and the current user has inadequate permission

to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficient STREAMS resources for the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname in

name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname in name.

ENOENT A component of the path prefix of the pathname in name does not exist.

ENOTDIR A component of the path prefix of the pathname in name is not a directory.

EROFS The inode would reside on a read-only file system.

SEE ALSO

unlink(2), socket(3N), attributes(5), socket(5)

NOTES

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller

when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains.

SP-Klausur Manual-Auszug 2018-07-17 1

dup(2) dup(2)

NAME

dup, dup2 − duplicate a file descriptor

SYNOPSIS

#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd , int newfd);

DESCRIPTION

dup() and dup2() create a copy of the file descriptor oldfd .

dup() uses the lowest-numbered unused descriptor for the new descriptor.

dup2() makes newfd be the copy of oldfd , closing newfd first if necessary, but note the following:

* If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

* If oldfd is a valid file descriptor, and newfd has the same value as oldfd , then dup2() does nothing, and

returns newfd .

After a successful return from dup() or dup2(), the old and new file descriptors may be used interchange-

ably. They refer to the same open file description (see open(2)) and thus share file offset and file status

flags; for example, if the file offset is modified by using lseek(2) on one of the descriptors, the offset is also

changed for the other.

The two descriptors do not share file descriptor flags (the close-on-exec flag). The close-on-exec flag

(FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

RETURN VALUE

dup() and dup2() return the new descriptor, or −1 if an error occurred (in which case, errno is set appropri-

ately).

ERRORS

EBADF

oldfd isn’t an open file descriptor, or newfd is out of the allowed range for file descriptors.

EBUSY

(Linux only) This may be returned by dup2() during a race condition with open(2) and dup().

EINTR

The dup2() call was interrupted by a signal; see signal(7).

EMFILE

The process already has the maximum number of file descriptors open and tried to open a new

one.

NOTES

The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...) when newfd is out

of range. On some systems dup2() also sometimes returns EINVAL like F_DUPFD.

If newfd was open, any errors that would have been reported at close(2) time are lost. A careful program-

mer will not use dup2() without closing newfd first.

SEE ALSO

close(2), fcntl(2), open(2)

SP-Klausur Manual-Auszug 2018-07-17 1

fopen/fdopen/fileno(3) fopen/fdopen/fileno(3)

NAME

fopen, fdopen, fileno − stream open functions

SYNOPSIS

#include <stdio.h>

FILE *fopen(const char *path, const char *mode);

FILE *fdopen(int fildes, const char *mode);

int fileno(FILE *stream);

DESCRIPTION

The fopen function opens the file whose name is the string pointed to by path and associates a stream with

it.

The argument mode points to a string beginning with one of the following sequences (Additional characters

may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning

of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated. The

stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not exist. The stream is

positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.

The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The mode of the stream

(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.

The file position indicator of the new stream is set to that belonging to fildes, and the error and end-of-file

indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not

dup’ed, and will be closed when the stream created by fdopen is closed. The result of applying fdopen to a

shared memory object is undefined.

The function fileno() examines the argument stream and returns its integer descriptor.

RETURN VALUE

Upon successful completion fopen, fdopen and freopen return a FILE pointer. Otherwise, NULL is

returned and the global variable errno is set to indicate the error.

ERRORS

EINVAL

The mode provided to fopen, fdopen, or freopen was inv alid.

The fopen, fdopen and freopen functions may also fail and set errno for any of the errors specified for the

routine malloc(3).

The fopen function may also fail and set errno for any of the errors specified for the routine open(2).

The fdopen function may also fail and set errno for any of the errors specified for the routine fcntl(2).

SEE ALSO

open(2), fclose(3), fileno(3)

SP-Klausur Manual-Auszug 2018-07-17 1

getc/fgets/putc/fputs(3) getc/fgets/putc/fputs(3)

NAME

fgetc, fgets, getc, getchar, fputc, fputs, putc, putchar − input and output of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE *stream);

char *fgets(char *s, int size, FILE *stream);

int getc(FILE *stream);

int getchar(void);

int fputc(int c, FILE *stream);

int fputs(const char *s, FILE *stream);

int putc(int c, FILE *stream);

int putchar(int c);

DESCRIPTION

fgetc() reads the next character from stream and returns it as an unsigned char cast to an int, or EOF on

end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluates stream more

than once.

getchar() is equivalent to getc(stdin).

fgets() reads in at most one less than size characters from stream and stores them into the buffer pointed to

by s. Reading stops after an EOF or a newline. If a newline is read, it is stored into the buffer. A ’\0’ is

stored after the last character in the buffer.

fputc() writes the character c, cast to an unsigned char, to stream.

fputs() writes the string s to stream, without its terminating null byte ('\0').

putc() is equivalent to fputc() except that it may be implemented as a macro which evaluates stream more

than once.

putchar(c); is equivalent to putc(c, stdout).

Calls to the functions described here can be mixed with each other and with calls to other output functions

from the stdio library for the same output stream.

RETURN VALUE

fgetc(), getc() and getchar() return the character read as an unsigned char cast to an int or EOF on end of

file or error.

fgets() returns s on success, and NULL on error or when end of file occurs while no characters have been

read. fputc(), putc() and putchar() return the character written as an unsigned char cast to an int or EOF

on error.

fputs() returns a nonnegative number on success, or EOF on error.

SEE ALSO

read(2), write(2), ferror(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline(3), getwchar(3),

scanf(3), ungetwc(3), write(2), ferror(3), fopen(3), fputwc(3), fputws(3), fseek(3), fwrite(3), gets(3),

putwchar(3), scanf(3), unlocked_stdio(3)

SP-Klausur Manual-Auszug 2018-07-17 1

ipv6/socket(7) ipv6/socket(7)

NAME

ipv6, AF_INET6 − Linux IPv6 protocol implementation

SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

tcp6_socket = socket(AF_INET6, SOCK_STREAM, 0);

raw6_socket = socket(AF_INET6, SOCK_RAW, protocol);

udp6_socket = socket(AF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION

Linux 2.2 optionally implements the Internet Protocol, version 6. This man page contains a description of

the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The interface is based on the BSD

sockets interface; see socket(7).

The IPv6 API aims to be mostly compatible with the ip(7) v4 API. Only differences are described in this

man page.

To bind an AF_INET6 socket to any process the local address should be copied from the in6addr_any vari-

able which has in6_addr type. In static initializations IN6ADDR_ANY_INIT may also be used, which

expands to a constant expression. Both of them are in network order.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type; thus a pro-

gram only needs only to support this API type to support both protocols. This is handled transparently by

the address handling functions in libc.

IPv4 and IPv6 share the local port space. When you get an IPv4 connection or packet to a IPv6 socket its

source address will be mapped to v6 and it will be mapped to v6.

Address Format

struct sockaddr_in6 {

uint16_t sin6_family; /* AF_INET6 */

uint16_t sin6_port; /* port number */

uint32_t sin6_flowinfo; /* IPv6 flow information */

struct in6_addr sin6_addr; /* IPv6 address */

uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */

};

struct in6_addr {

unsigned char s6_addr[16]; /* IPv6 address */

};

sin6_family is always set to AF_INET6; sin6_port is the protocol port (see sin_port in ip(7)); sin6_flowinfo

is the IPv6 flow identifier; sin6_addr is the 128-bit IPv6 address. sin6_scope_id is an ID of depending of

on the scope of the address. It is new in Linux 2.4. Linux only supports it for link scope addresses, in that

case sin6_scope_id contains the interface index (see netdevice(7))

RETURN VALUES

−1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

NOTES

The sockaddr_in6 structure is bigger than the generic sockaddr. Programs that assume that all address

types can be stored safely in a struct sockaddr need to be changed to use struct sockaddr_storage for that

instead.

SEE ALSO

cmsg(3), ip(7)

SP-Klausur Manual-Auszug 2018-07-17 1

listen(2) listen(2)

NAME

listen − listen for connections on a socket

SYNOPSIS

#include <sys/types.h> /* See NOTES */

#include <sys/socket.h>

int listen(int sockfd , int backlog);

DESCRIPTION

listen() marks the socket referred to by sockfd as a passive socket, that is, as a socket that will be used to

accept incoming connection requests using accept(2).

The sockfd argument is a file descriptor that refers to a socket of type SOCK_STREAM or SOCK_SEQ-

PA CKET.

The backlog argument defines the maximum length to which the queue of pending connections for sockfd

may grow. If a connection request arrives when the queue is full, the client may receive an error with an

indication of ECONNREFUSED or, if the underlying protocol supports retransmission, the request may be

ignored so that a later reattempt at connection succeeds.

RETURN VALUE

On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS

EADDRINUSE

Another socket is already listening on the same port.

EBADF

The argument sockfd is not a valid descriptor.

ENOTSOCK

The argument sockfd is not a socket.

NOTES

To accept connections, the following steps are performed:

1. A socket is created with socket(2).

2. The socket is bound to a local address using bind(2), so that other sockets may be connect(2)ed

to it.

3. A willingness to accept incoming connections and a queue limit for incoming connections are

specified with listen().

4. Connections are accepted with accept(2).

If the backlog argument is greater than the value in /proc/sys/net/core/somaxconn, then it is silently trun-

cated to that value; the default value in this file is 128.

EXAMPLE

See bind(2).

SEE ALSO

accept(2), bind(2), connect(2), socket(2), socket(7)

SP-Klausur Manual-Auszug 2018-07-17 1

opendir/readdir(3) opendir/readdir(3)

NAME

opendir − open a directory / readdir − read a directory

SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);

DESCRIPTION opendir

The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer

to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE

The opendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir

The readdir() function returns a pointer to a dirent structure representing the next directory entry in the

directory stream pointed to by dir. It returns NULL on reaching the end-of-file or if an error occurred. It is

safe to use readdir() inside threads if the pointers passed as dir are created by distinct calls to opendir().

The data returned by readdir() is overwritten by subsequent calls to readdir() for the same directory

stream.

The dirent structure is defined as follows:

struct dirent {

long d_ino; /* inode number */

off_t d_off; /* offset to the next dirent */

unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file; not supported by all filesystem types */

char d_name[256]; /* filename */

};

RETURN VALUE

The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is

reached.

ERRORS

EACCES

Permission denied.

ENOENT

Directory does not exist, or name is an empty string.

ENOTDIR

name is not a directory.

SP-Klausur Manual-Auszug 2018-07-17 1

pthread_create/pthread_exit(3) pthread_create/pthread_exit(3)

NAME

pthread_create − create a new thread / pthread_exit − terminate the calling thread

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t * thread , pthread_attr_t * attr, void * (*start_routine)(void *), void *

arg);

void pthread_exit(void *retval);

DESCRIPTION

pthread_create creates a new thread of control that executes concurrently with the calling thread. The new

thread applies the function start_routine passing it arg as first argument. The new thread terminates either

explicitly, by calling pthread_exit(3), or implicitly, by returning from the start_routine function. The latter

case is equivalent to calling pthread_exit(3) with the result returned by start_routine as exit code.

The attr argument specifies thread attributes to be applied to the new thread. See pthread_attr_init(3) for a

complete list of thread attributes. The attr argument can also be NULL, in which case default attributes are

used: the created thread is joinable (not detached) and has default (non real-time) scheduling policy.

pthread_exit terminates the execution of the calling thread. All cleanup handlers that have been set for the

calling thread with pthread_cleanup_push(3) are executed in reverse order (the most recently pushed han-

dler is executed first). Finalization functions for thread-specific data are then called for all keys that have

non- NULL values associated with them in the calling thread (see pthread_key_create(3)). Finally, exe-

cution of the calling thread is stopped.

The retval argument is the return value of the thread. It can be consulted from another thread using

pthread_join(3).

RETURN VALUE

On success, the identifier of the newly created thread is stored in the location pointed by the thread argu-

ment, and a 0 is returned. On error, a non-zero error code is returned.

The pthread_exit function never returns.

ERRORS

EAGAIN

not enough system resources to create a process for the new thread.

EAGAIN

more than PTHREAD_THREADS_MAX threads are already active.

AUTHOR

Xavier Leroy <Xavier.Leroy@inria.fr>

SEE ALSO

pthread_join(3), pthread_detach(3), pthread_attr_init(3).

SP-Klausur Manual-Auszug 2018-07-17 1

strdup(3) strdup(3)

NAME

strdup, strndup − duplicate a string

SYNOPSIS

#include <string.h>

char *strdup(const char *s);

char *strndup(const char *s, size_t n);

DESCRIPTION

The strdup() function returns a pointer to a new string which is a duplicate of the string s. Memory for the

new string is obtained with malloc(3), and can be freed with free(3).

The strndup() function is similar, but copies at most n bytes. If s is longer than n, only n bytes are copied,

and a terminating null byte ('\0') is added.

RETURN VALUE

On success, the strdup() function returns a pointer to the duplicated string. It returns NULL if insufficient

memory was available, with errno set to indicate the cause of the error.

ERRORS

ENOMEM

Insufficient memory available to allocate duplicate string.

CONFORMING TO

strdup() conforms to SVr4, 4.3BSD, POSIX.1-2001. strndup() conforms to POSIX.1-2008.

SP-Klausur Manual-Auszug 2018-07-17 1

strtok(3) strtok(3)

NAME

strtok, strtok_r − extract tokens from strings

SYNOPSIS

#include <string.h>

char *strtok(char *str, const char *delim);

char *strtok_r(char *str, const char *delim, char **saveptr);

DESCRIPTION

The strtok() function breaks a string into a sequence of zero or more nonempty tokens. On the first call to

strtok() the string to be parsed should be specified in str. In each subsequent call that should parse the

same string, str must be NULL.

The delim argument specifies a set of bytes that delimit the tokens in the parsed string. The caller may

specify different strings in delim in successive calls that parse the same string.

Each call to strtok() returns a pointer to a null-terminated string containing the next token. This string does

not include the delimiting byte. If no more tokens are found, strtok() returns NULL.

A sequence of calls to strtok() that operate on the same string maintains a pointer that determines the point

from which to start searching for the next token. The first call to strtok() sets this pointer to point to the

first byte of the string. The start of the next token is determined by scanning forward for the next nondelim-

iter byte in str. If such a byte is found, it is taken as the start of the next token. If no such byte is found,

then there are no more tokens, and strtok() returns NULL. (A string that is empty or that contains only

delimiters will thus cause strtok() to return NULL on the first call.)

The end of each token is found by scanning forward until either the next delimiter byte is found or until the

terminating null byte ('\0') is encountered. If a delimiter byte is found, it is overwritten with a null byte to

terminate the current token, and strtok() saves a pointer to the following byte; that pointer will be used as

the starting point when searching for the next token. In this case, strtok() returns a pointer to the start of

the found token.

From the above description, it follows that a sequence of two or more contiguous delimiter bytes in the

parsed string is considered to be a single delimiter, and that delimiter bytes at the start or end of the string

are ignored. Put another way: the tokens returned by strtok() are always nonempty strings. Thus, for

example, given the string "aaa;;bbb,", successive calls to strtok() that specify the delimiter string ";,"

would return the strings "aaa" and "bbb", and then a null pointer.

The strtok_r() function is a reentrant version strtok(). The saveptr argument is a pointer to a char * vari-

able that is used internally by strtok_r() in order to maintain context between successive calls that parse the

same string. On the first call to strtok_r(), str should point to the string to be parsed, and the value of

saveptr is ignored. In subsequent calls, str should be NULL, and saveptr should be unchanged since the

previous call.

Different strings may be parsed concurrently using sequences of calls to strtok_r() that specify different

saveptr arguments.

RETURN VALUE

strtok() and strtok_r() return a pointer to the next token, or NULL if there are no more tokens.

ATTRIBUTES

Multithreading (see pthreads(7))

The strtok() function is not thread-safe, the strtok_r() function is thread-safe.

SP-Klausur Manual-Auszug 2018-07-17 1

