
stat(2) stat(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char * file_name, struct stat *buf );
int fstat(int filedes, struct stat *buf );
int lstat(const char * file_name, struct stat *buf );

DESCRIPTION
These functions return information about the specified file.You do not need any access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to byfile_nameand fills inbuf .

lstat is identical tostat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
it refers to.

fstat is identical tostat, only the open file pointed to byfiledes(as returned byopen(2)) is stat-ed in place
of file_name.

They all return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize;/* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The valuest_sizegives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

The valuest_blocksgives the size of the file in 512-byte blocks.(This may be smaller thanst_size/512 e.g.
when the file has holes.) The valuest_blksizegives the "preferred" blocksize for efficient file system I/O.
(Writing to a file in smaller chunks may cause an inefficient read-modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atimefield. (See ‘noatime’ inmount(8).)

The fieldst_atimeis changed by file accesses, e.g. byexecve(2), mknod(2), pipe(2), utime(2) andread(2)
(of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, e.g. bymknod(2), truncate(2), utime(2) andwrite(2)
(of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or deletion of files
in that directory. Thest_mtimefield isnotchanged for changes in owner, group, hard link count, or mode.

SOSI-Klausur Manual-Auszug 2006-06-22 1

stat(2) stat(2)

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type:

S_ISREG(m) isit a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) characterdevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) fifo?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

The following flags are defined for thest_modefield:

S_IFMT 0170000 bitmask for the file type bitfields
S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 fifo
S_ISUID 0004000 set UID bit
S_ISGID 0002000 set GID bit (see below)
S_ISVTX 0001000 sticky bit (see below)
S_IRWXU 00700 mask for file owner permissions
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission
S_IRWXG 00070 mask for group permissions
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission
S_IRWXO 00007 mask for permissions for others (not in group)
S_IROTH 00004 othershave read permission
S_IWOTH 00002 othershave write permisson
S_IXOTH 00001 others have execute permission

The set GID bit (S_ISGID) has several special uses: For a directory it indicates that BSD semantics is to be
used for that directory: files created there inherit their group ID from the directory, not from the effective
group ID of the creating process, and directories created there will also get the S_ISGID bit set.For a file
that does not have the group execution bit (S_IXGRP) set, it indicates mandatory file/record locking.

The ‘sticky’ bit (S_ISVTX) on a directory means that a file in that directory can be renamed or deleted only
by the owner of the file, by the owner of the directory, and by a privileged process.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

SEE ALSO
chmod(2), chown(2), readlink(2), utime(2), capabilities(7)

SOSI-Klausur Manual-Auszug 2006-06-22 2


