
opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir );

DESCRIPTION opendir
Theopendir() function opens a directory stream corresponding to the directoryname, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
Theopendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to bydir. It returns NULL on reaching the end-of-file or if an error occurred.

The data returned byreaddir() is overwritten by subsequent calls toreaddir() for the same directory
stream.

Thedirentstructure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned shortd_reclen; /*length of this record */
unsigned chard_type; /*type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

ERRORS
EACCES

Permission denied.

EMFILE
Too many file descriptors in use by process.

ENFILE
Too many files are currently open in the system.

ENOENT
Directory does not exist, ornameis an empty string.

ENOMEM
Insufficient memory to complete the operation.

ENOTDIR
nameis not a directory.

SEE ALSO
open(2), readdir(3), closedir(3), rewinddir(3), seekdir(3), telldir(3), scandir(3)

SP-Miniklausur Manual-Auszug 2008-12-11 1

strcat(3) strcat(3)

NAME
strcat, strncat − concatenate two strings

SYNOPSIS
#include <string.h>

char *strcat(char *dest, const char *src);

char *strncat(char *dest, const char *src, size_t n);

DESCRIPTION
The strcat() function appends thesrc string to thedeststring, overwriting the null byte ('\0') at the end of
dest, and then adds a terminating null byte. The strings may not overlap, and thedeststring must have
enough space for the result.

Thestrncat() function is similar, except that

* i t will use at mostn characters fromsrc; and

* src does not need to be null terminated if it containsn or more characters.

As with strcat(), the resulting string indestis always null terminated.

If src containsn or more characters,strncat() writesn+1 characters todest(n from src plus the terminating
null byte). Therefore, the size ofdestmust be at leaststrlen(dest)+n+1.

A simple implementation ofstrncat() might be:

char*
strncat(char *dest, const char *src, size_t n)
{

size_t dest_len = strlen(dest);
size_t i;

for (i = 0 ; i < n && src[i] != '\0' ; i++)
dest[dest_len + i] = src[i];

dest[dest_len + i] = '\0';

return dest;
}

RETURN VALUE
Thestrcat() andstrncat() functions return a pointer to the resulting stringdest.

CONFORMING TO
SVr4, 4.3BSD, C89, C99.

SEE ALSO
bcopy(3), memccpy(3), memcpy(3), strcpy(3), strncpy(3), wcscat(3), wcsncat(3)

COLOPHON
This page is part of release 3.05 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP-Miniklausur Manual-Auszug 2008-12-11 1



stat(2) stat(2)

NAME
stat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char * file_name, struct stat *buf );
int lstat(const char * file_name, struct stat *buf );

DESCRIPTION
These functions return information about the specified file.You do not need any access rights to the file to
get this information but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to byfile_nameand fills inbuf .

lstat is identical tostat, except in the case of a symbolic link, where the link itself is stat-ed, not the file that
it refers to.

They all return astatstructure, which contains the following fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize;/* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The valuest_sizegives the size of the file (if it is a regular file or a symlink) in bytes. The size of a symlink
is the length of the pathname it contains, without trailing NUL.

Not all of the Linux filesystems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atimefield. (See ‘noatime’ inmount(8).)

The fieldst_atimeis changed by file accesses, e.g. byexecve(2), mknod(2), pipe(2), utime(2) andread(2)
(of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtimeis changed by file modifications, e.g. bymknod(2), truncate(2), utime(2) andwrite(2)
(of more than zero bytes).Moreover, st_mtimeof a directory is changed by the creation or deletion of files
in that directory. Thest_mtimefield isnotchanged for changes in owner, group, hard link count, or mode.

The fieldst_ctimeis changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

SP-Miniklausur Manual-Auszug 2008-12-11 1


