
exec(2) exec(2)

NAME
exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS
#include <unistd.h>

int execl(const char *path, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path,char *const arg0[] , . . . , const char *argn,
char * /*NULL*/ , char *const envp[]);

int execve (const char *path, char *const argv[] char *const envp[]);

int execlp (const char *file, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execvp (const char *file, char *const argv[]);

DESCRIPTION
Each of the functions in theexecfamily overlays a new process image on an old process.The new process
image is constructed from an ordinary, executable file. This file is either an executable object file, or a file
of data for an interpreter. There can be no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int ar gc, char∗argv[], char ∗envp[]);

whereargc is the argument count,argv is an array of character pointers to the arguments themselves, and
envpis an array of character pointers to the environment strings.As indicated,argc is at least one, and the
first member of the array points to a string containing the name of the file.

The argumentsarg0, . . ., argn point to null-terminated character strings.These strings constitute the argu-
ment list available to the new process image.Conventionally at leastarg0 should be present.The arg0
argument points to a string that is the same aspath (or the last component ofpath). Thelist of argument
strings is terminated by a(char ∗)0 argument.

Theargv argument is an array of character pointers to null-terminated strings.These strings constitute the
argument list available to the new process image.By convention,argv must have at least one member, and
it should point to a string that is the same aspath (or its last component).Theargv argument is terminated
by a null pointer.

Thepath argument points to a path name that identifies the new process file.

Thefile argument points to the new process file.If file does not contain a slash character, the path prefix for
this file is obtained by a search of the directories passed in thePATH environment variable (seeenvir on(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process
image (seesignal(3C)). Otherwise,the new process image inherits the signal dispositions of the calling
process.

RETURN VALUES
If a function in theexecfamily returns to the calling process, an error has occurred; the return value is−1
anderrno is set to indicate the error.

SP-Klausur Manual-Auszug 2010-06-14 1

qsort(3) qsort(3)

NAME
qsort − sorts an array

SYNOPSIS
#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,
int(* compar)(const void *, const void *));

DESCRIPTION
Theqsort() function sorts an array withnmembelements of sizesize. Thebaseargument points to the start
of the array.

The contents of the array are sorted in ascending order according to a comparison function pointed to by
compar, which is called with two arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the first argument
is considered to be respectively less than, equal to, or greater than the second.If two members compare as
equal, their order in the sorted array is undefined.

RETURN VALUE
Theqsort() function returns no value.

SEE ALSO
sort(1), alphasort(3), strcmp(3), versionsort(3)

COLOPHON
This page is part of release 3.05 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP-Klausur Manual-Auszug 2010-06-14 1

strcmp(3) strcmp(3)

NAME
strcmp, strncmp − compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
The strcmp() function compares the two strings s1 and s2. It returns an integer less than, equal to, or
greater than zero ifs1 is found, respectively, to be less than, to match, or be greater thans2.

Thestrncmp() function is similar, except it only compares the first (at most)n characters ofs1ands2.

RETURN VALUE
Thestrcmp() andstrncmp() functions return an integer less than, equal to, or greater than zero ifs1(or the
first n bytes thereof) is found, respectively, to be less than, to match, or be greater thans2.

CONFORMING T O
SVr4, 4.3BSD, C89, C99.

SEE ALSO
bcmp(3), memcmp(3), strcasecmp(3), strcoll(3), strncasecmp(3), wcscmp(3), wcsncmp(3)

SP-Klausur Manual-Auszug 2010-06-14 1

wait(2) wait(2)

NAME
wait, waitpid, waitid − wait for process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int * status);

pid_t waitpid(pid_t pid, int * status, int options);

DESCRIPTION
All of these system calls are used to wait for state changes in a child of the calling process, and obtain
information about the child whose state has changed.A state change is considered to be: the child termi-
nated; the child was stopped by a signal; or the child was resumed by a signal.In the case of a terminated
child, performing a wait allows the system to release the resources associated with the child; if a wait is not
performed, then the terminated child remains in a "zombie" state (see NOTES below).

If a child has already changed state, then these calls return immediately.

The wait() system call suspends execution of the calling process until one of its children terminates.The
waitpid () system call suspends execution of the calling process until a child specified bypid argument has
changed state.By default, waitpid () waits only for terminated children, but this behavior is modifiable via
theoptionsargument, as described below.

The value ofpid can be:

< −1 meaning wait for any child process whose process group ID is equal to the absolute value ofpid.

−1 meaningwait for any child process.

0 meaning wait for any child process whose process group ID is equal to that of the calling process.

> 0 meaning wait for the child whose process ID is equal to the value ofpid.

The value ofoptionsis an OR of zero or more of the following constants:

WNOHANG return immediately if no child has exited.

If statusis not NULL,wait() andwaitpid () store status information in theint to which it points.This inte-
ger can be inspected with the following macros (which take the integer itself as an argument, not a pointer
to it, as is done inwait() andwaitpid ()!):

WIFEXITED(status)
returns true if the child terminated normally, that is, by callingexit(3) or _exit(2), or by returning
from main().

WEXITSTATUS(status)
returns the exit status of the child.This consists of the least significant 8 bits of thestatusargu-
ment that the child specified in a call toexit(3) or _exit(2) or as the argument for a return state-
ment in main().This macro should only be employed if WIFEXITED returned true.

RETURN VALUE
wait(): on success, returns the process ID of the terminated child; on error, −1 is returned.

waitpid (): on success, returns the process ID of the child whose state has changed; ifWNOHANG was
specified and one or more child(ren) specified bypid exist, but have not yet changed state, then 0 is
returned. Onerror, −1 is returned.

SP-Klausur Manual-Auszug 2010-06-14 1

