Systemprogrammierung

Grundlagen von Betriebssystemen

Teil B – VII.2 Betriebsarten: Dialog- und Echtzeitverarbeitung

Wolfgang Schröder-Preikschat

28. Juli 2022 (nicht als Präsenzvorlesung)

Gliederung

Einführung

Mehrzugangsbetrieb

Multiprozessoren

Agenda

Einführung

Mehrzugangsbetrieb Teilnehmerbetrieb Teilhaberbetrieb

Echtzeitbetrieb

Prozesssteuerung Echtzeitbedingungen

Systemmerkmale

Multiprozessoren

Schutzvorkehrungen

Speicherverwaltung

Universalität

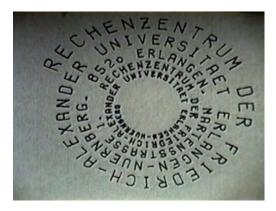
Zusammenfassung

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

VII.2/2

Lehrstoff

- weiterhin ist das Ziel, "zwei Fliegen mit einer Klappe zu schlagen":
 - i einen Einblick in Betriebssystemgeschichte zu geben und
 - ii damit gleichfalls Betriebsarten von Rechensystemen zu erklären
- im Vordergrund stehen die Entwicklungsstufen im Dialogbetrieb, der Dialogprozesse einführt, d.h., Prozesse:
 - die an der Konkurrenz um gemeinsame Betriebsmittel teilnehmen
 - die Benutzer/innen an einer Dienstleistung teilhaben lassen
- kennzeichnend ist, Programmausführung interaktiv zu gestalten
 - mitlaufend (*on-line*) den Prozessfortschritt beobachten und überwachen
 - dazu spezielle Schutzvorkehrungen und eine effektive Speicherverwaltung


Hinweis

Viele dieser Techniken — wenn nicht sogar alle — sind auch heute noch in einem Universalbetriebssystem auffindbar.

des Weiteren erfolgt ein kurzer Einblick in den Echtzeitbetrieb, der an sich quer zu all den betrachteten Betriebsarten liegt

https://www.video.uni-erlangen.de/clip/id/4251.html

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

1. Einführung

VII.2/5

Dialogbetrieb

conversational mode

- Benutzereingaben und Verarbeitung wechseln sich anhaltend ab
 - E/A-intensive Anwendungsprogramme interagieren mit Benutzer/inne/n
 - Zugang über Dialogstationen (interactive terminals)
 - Datensichtgerät und Tastatur (seit 1950er Jahren, Whirlwind/SAGE)
 - später die *Maus* (Engelbart/English, SRI, 1963/64; vorgestellt 1968)
- **dynamische Einplanung** (*dynamic scheduling*, *on-line*) hält Einzug, bevorzugt interaktive (E/A-intensive) Prozesse
 - Beendigung von Ein-/Ausgabe führt zur "prompten" Neueinplanung - im Falle von E/A-Operationen, die sich blockierend auswirken
 - Benutzer/innen erfahren eine schnelle Reaktion insb. auf Eingaben - sofern auch die Einlastung von Prozessen "prompt" geschieht
- Problem:
 - Zusatz (add-on) zum Stapelbetrieb, Monopolisierung der CPU, Sicherheit

Anekdote (add-on: aus eigener Erfahrung im Studium)

Hin und wieder verliefen Sitzungen über CMS (conversational monitor system) an den Dialogstationen des IBM System/360 schon recht träge. Unter den Studierenden hatte sich schnell herumgesprochen, mittels Tastatureingaben die Dringlichkeit ihrer im Hintergrund ablaufenden Programmausführung anheben zu können.

Gliederung

Mehrzugangsbetrieb **Teilnehmerbetrieb Teilhaberbetrieb**

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

2. Mehrzugangsbetrieb

VII.2/6

Dialogororientiertes Monitorsystem

- Prozesse "im Vordergrund" starten und "im Hintergrund" vollziehen
 - in Konversation Aufträge annehmen, ausführen und dabei überwachen
 - d.h. Prozesse starten, stoppen, fortführen und ggf. abbrechen
 - zur selben Zeit laufen im Rechensystem mehrere Programme parallel ab
 - mehrere Aufgaben (task) werden "gleichzeitig" bearbeitet (multitasking)
- in weiterer Konsequenz lässt sich so **Mischbetrieb** unterstützen, z.B.:

 - Vordergrund echtzeitabhängige Prozesse ~ Echtzeitbetrieb (Realzeit)
 - Hintergrund CPU-intensive Prozesse ~> Stapelbetrieb
 - Mittelgrund E/A-intensive Prozesse ~ Dialogbetrieb
 - (Antwortzeit) (Rechenzeit)

- Problem:
 - Hauptspeicher(größe)

Mischbetrieb

Zeit ist ein wichtiger Aspekt, jedoch ist dabei das Bezugssystem zu beachten: Antwort-/Rechenzeit hat nur das Rechensystem, Echtzeit jedoch vor allem die (phys.) Umgebung als Bezugsrahmen.

Dialog mit teilnehmenden Prozessen

time sharing

- eigene Dialogprozesse werden interaktiv gestartet und konkurrieren mit anderen (Dialog-) Prozessen um gemeinsame Betriebsmittel
 - um CPU-Monopolisierung vorzubeugen, werden CPU-Stöße partitioniert, indem Prozesse nur eine **Zeitscheibe** (*time slice*) lang "laufend" sind
 - ist die Zeitscheibe abgelaufen, wird der Prozess von der CPU verdrängt
 - er erhält die CPU sodann für eine neue Zeitscheibe erneut zugeteilt
 - CPU-Zeit ist damit eine Art konsumierbares Betriebsmittel, um das wiederverwendbare Betriebsmittel "CPU" beanspruchen zu können
 - jeder Dialogprozess "nimmt teil" an der Konkurrenz um Betriebsmittel
- technische Grundlage liefert ein **Zeitgeber** (*timer*), der für **zyklische Unterbrechungen** (*timer interrupt*) sorgt
 - der unterbrochene Prozess wird neu eingeplant: "laufend" → "bereit"
 - ihm wird die CPU zu Gunsten eines anderen Prozesses entzogen
 - er erfährt die Verdrängung (preemption) von "seinem" Prozessor
 - aber nur, sofern es einen anderen Prozess im Zustand "bereit" gibt

Problem:

■ Hauptspeicher, Einplanung, Einlastung, Ein-/Ausgabe, Sicherheit

wosch SP (28. Juli 2022 (nicht als Präsenzvorlesung))

2.2 Mehrzugangsbetrieb – Teilnehmerbetrieb

Dialog mit teilhabenden Prozessen

transaction mode

- ein von mehreren Dialogstationen aus gemeinsam benutzter, zentraler Dialogprozess führt die abgesetzten Kommandos aus
 - mehrere Benutzer "haben Teil" an der Dienstleistung eines Prozesses, die Bedienung regelt ein einzelnes Programm
 - gleichartige, bekannte und festverdrahtete (hard-wired) Aktionen können von verschiedenen Benutzern zugleich ausgelöst werden
- das den Dialogprozess vorgebende **Dienstprogramm** steht für einen **Endbenutzerdienst** mit festem, definiertem Funktionsangebot
 - Kassen, Bankschalter, Auskunft-/Buchungssysteme, . . .
 - allgemein: Transaktionssysteme

Problem:

Antwortverhalten (weiche/feste Echtzeit), Durchsatz

Teilhabersystem

So auch ein Klient/Anbieter-System (*client/server system*), in dem **Dienstnehmer** (*service user*) mit einem **Dienstgeber** (*service provider*) interagieren.

Bahnbrecher und Wegbereiter I

- **CTSS** (Compatible Time-Sharing System [1], MIT, 1961)
- Pionierarbeit zu interaktiven Systemen und zur Prozessverwaltung
 - partielle Virtualisierung: Prozessinkarnation als virtueller Prozessor
 - mehrstufige Einplanung (multi-level scheduling) von Prozessen
 - zeilenorientierte Verarbeitung von Kommandos (u.a. printf [1, S. 340])
 - vier Benutzer gleichzeitig: drei im Vordergrund, einen im Hintergrund²
- ITS (Incompatible Time-sharing System [5], MIT, 1969)
 - Pionierarbeit zur Ein-/Ausgabe und Prozessverwaltung:
 - geräteunabhängige Ausgabe auf Grafikbildschirme, virtuelle Geräte
 - netzwerktransparenter Dateizugriff (über ARPANET [24])
 - Prozesshierarchien, Kontrolle untergeordneter Prozesse (~Z [5, S. 13])
 - "Seitenhieb" auf CTSS und Multics, wegen der eingeschlagenen Richtung

Zeitteilverfahren

Time-sharing was a misnomer. While it did allow the sharing of a central computer, its success derives from the ability to share other resources: data, programs, concepts. [22]

 $^2\mbox{\it Time-sharing introduced the engineering constraint that the interactive needs of users [were] just as important as the efficiency of the equipment. (F. J. Corbató)$

wosch SP (28. Juli 2022 (nicht als Präsenzvorlesung))

2.2 Mehrzugangsbetrieb – Teilnehmerbetrieb

Gliederung

Einführung

Mehrzugangsbetrieb Teilnehmerbetrieb Teilhaberbetrieb

Echtzeitbetrieb

Prozesssteuerung Echtzeitbedingungen

Systemmerkmale

Multiprozessoren

Schutzvorkehrung

Speicherverwaltu

Universalität

Zusammenfassung

Dialog mit Echtzeitprozessen

Definition (Echtzeitbetrieb, in Anlehnung an DIN 44300 [4])

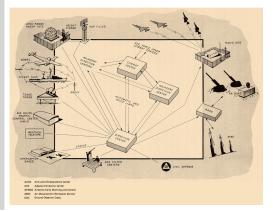
[...] Betrieb eines Rechensystems, bei dem Programme zur Verarbeitung anfallender Daten ständig betriebsbereit sind derart, dass die Verarbeitungsergebnisse innerhalb einer vorgegebenen Zeitspanne verfügbar sind. Die Daten werden nach einer zeitlich zufälligen Verteilung (ereignisgesteuert) oder zu vorbestimmten Zeitpunkten (zeitgesteuert) verwendet.

- kennzeichnend ist, dass die Zustandsänderung von Prozessen durch eine Funktion der realen Zeit [14] definiert ist
 - das korrekte Verhalten des Systems hängt nicht nur von den logischen Ergebnissen von Berechnungen ab
 - zusätzlicher Aspekt ist der physikalische Zeitpunkt der Erzeugung und Verwendung der Berechnungsergebnisse
- interne Prozesse des Rechensystems müssen externe Prozesse der phyikalischen Umgebung des Rechensystems steuern/überwachen

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

3.1 Echtzeitbetrieb – Prozesssteuerung

Echtzeitfähigkeit bedeutet Rechtzeitigkeit


- im Vordergrund steht die **zuverlässige Reaktion** des Rechensystems auf Ereignisse in der Umgebung des Rechensytsems
 - interne Prozesse erhalten jeweils einen **Termin** (deadline) vorgegeben, bis zu dem ein Berechnungsergebnis abzuliefern ist
 - die **Terminvorgaben** sind <u>weich</u> (soft), fest (firm) oder <u>hart</u> (hard), sie sind durch die externen Prozessen bestimmt
- Geschwindigkeit liefert keine Garantie, um rechtzeitig Ergebnisse von Berechnungen abliefern und Reaktionen darauf auslösen zu können
 - die im Rechensystem verwendete Zeitskala muss mit der durch die Umgebung vorgegebenen identisch sein
 - "Zeit" ist keine intrinsische Eigenschaft des Rechensystems

Determiniertheit und Determinismus

Einerseits sind bei ein und derselben Eingabe verschiedene Abläufe zulässig, die dann jedoch stets das gleiche Resultat liefern müssen. Andererseits muss zu jedem Zeitpunkt im Rechensystem bestimmt sein, wie weitergefahren wird.

- **SAGE** (semi-automatic ground environment, 1958–1983)
 - Whirlwind (MIT, 1951), AN/FSQ-7 (Whirlwind II, IBM, 1957)
- erstes Echtzeitrechensystem eine Schöpfung des "Kalten Krieges":

- 27 Installationen über die USA verteilt
 - Nonstop-Betrieb
 - 25 Jahre
- durch Datenfernleitungen miteinander gekoppelt
 - Telefonleitungen
 - Vorläufer des Internets
- pro Installation:
 - 100 Konsolen
 - 500 KLOC Assembler

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

3.1 Echtzeitbetrieb - Prozesssteuerung

Terminvorgaben

- externe (physikalische) Prozesse definieren, was genau bei einer nicht termingerecht geleisteten Berechnung zu geschehen hat:
 - weich (soft) auch "schwach"
 - das Ergebnis ist weiterhin von Nutzen, verliert jedoch mit jedem weiteren Zeitverzug des internen Prozesses zunehmend an Wert
 - die Terminverletzung ist tolerierbar

fest (firm) auch "stark"

- das Ergebnis ist wertlos, wird verworfen, der interne Prozess wird abgebrochen und erneut bereitgestellt
- die Terminverletzung ist tolerierbar

hart (hard) auch "strikt"

- Verspätung der Ergebnislieferung kann zur "Katastrophe" führen, dem internen Prozess wird eine Ausnahmesituation zugestellt
- Terminverletzung ist keinesfalls tolerierbar aber möglich. . .
- Problem:
 - Termineinhaltung unter allen Last- und Fehlerbedingungen

Terminvorgaben: fest ← hart

- eine Terminverletzung bedeutet grundsätzlich die Ausnahmesituation, deren Behandlung jedoch auf verschiedenen Ebenen erfolgt
 - im Betriebssystem (fest) oder im Maschinenprogramm (hart)
 - im ..harten Fall" also im Anwendungsprogramm des späten Prozesses
- das Betriebssystem erkennt die Verletzung, die Anwendung muss aber plangemäß weiterarbeiten (fest) | den sicheren Zustand finden (hart)
 - das Betriebssystem bricht die Berechnung ab
 - die nächste Berechnung wird gestartet
 - transparent f
 ür die Anwendung
- das Betriebssystem löst eine Ausnahmesituation aus
- die Ausnahmebehandlung führt zum sicheren Zustand
- intransparent für die Anwendung

Terminverletzung

Auch wenn der Ablaufplan von Prozessen und das Betriebssystem in Theorie "am Reißbrett" deterministisch sind, kann in Praxis das Rechensystem Störeinflüssen unterworfen sein und so Termine verpassen.

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

3.2 Echtzeitbetrieb – Echtzeitbedingungen VII.2/17

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4. Systemmerkmale

VII.2/18

Symmetrische Simultanverarbeitung

Definition (SMP, symmetric multiprocessing)

Zwei oder mehr gleiche (identische) Prozessoren, eng gekoppelt über ein gemeinsames Verbindungssystem.

- erfordert ganz bestimmte architektonische Merkmale sowohl von der Befehlssatz- als auch von der Maschinenprogrammebene
 - jeder Prozessor hat gleichberechtigten Zugriff auf den Hauptspeicher (shared-memory access) und die Peripherie
 - der Zugriff auf den Hauptspeicher ist für alle Prozessoren gleichförmig (uniform memory access, UMA)
 - bedingt in nichtfunktionaler Hinsicht, sofern nämlich die Zyklenanzahl pro Speicherzugriff betrachtet wird
 - unbedingt aber im funktionalen Sinn bezogen auf die Maschinenbefehle
- die Prozessoren stellen ein homogenes System dar und sie werden von demselben Betriebssystem verwaltet
- Problem:
 - Synchronisation, Skalierbarkeit

Gliederung

Mehrzugangsbetrieb

Prozesssteuerung

Systemmerkmale

Multiprozessoren Schutzvorkehrungen Speicherverwaltung Universalität

Speichergekoppelter Multiprozessor

Definition (SMP, shared-memory processor)

Ein Parellelrechnersystem, in dem alle Prozessoren den Hauptspeicher mitbenutzen, ohne jedoch einen gleichberechtigten/-förmigen Zugriff darauf haben zu müssen.

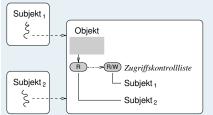
- architektonische Merkmale der Befehlssatzebene geben bestimmte Freiheitsgrade für die Simultanverarbeitung vor
 - asymmetrisch hardwarebedingter, zwingender asymmetrischer Betrieb
 - Programme sind ggf. prozessorgebunden
 - → asymmetric multiprocessing

- symmetrisch anwendungsorientierter Betrieb wird ermöglicht
 - das Betriebssystem legt die Multiprozessorbetriebsart fest
 - symmetric/asymmetric multiprocessing
- die Maschinenprogrammebene kann ein heterogenes System bilden, in funktionaler und nichtfunktionaler Hinsicht
- Problem:
 - Synchronisation, Skalierbarkeit, Anpassbarkeit

- das Multiprozessorsystem kann...
 - *N* verschiedene oder identische Programme,
 - N Fäden dieser Programme oder
 - N Fäden ein und desselben Programms
 - ... echt parallel ausführen
- jeder Prozessor kann...
 - *M* verschiedene oder identische Programme,
 - M Fäden dieser Programme oder
 - *M* Fäden ein und desselben Programms
 - ... pseudo/quasi parallel im Multiplexbetrieb ausführen
- $N \times M$ Ausführungsstränge können **nebenläufig** stattfinden

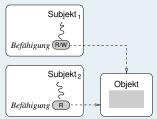
Synchronisation

Die Art und Weise der Koordination der Kooperation und Konkurrenz gleichzeitiger Prozesse ist nur bedingt davon abhängig, ob der Betrieb des Rechensystems echt oder pseudo/quasi parallel geschieht.


SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4.1 Systemmerkmale – Multiprozessoren

Gegenüberstellung


feinkörniger Schutz durch selektive Autorisierung der Zugriffe:

Zugriffskontrollliste Subjekt 1 Objekt

- Rechtevergabe einfach (lokal)
- Rechterücknahme: einfach (lokal)
- Rechteüberprüfung: aufwendig (Suche)
- dito Subjektrechtebestimmung (entfernt)
- Objektsicht-Rechtebestimmung: einfach
- Kontrollinformation: zentral gespeichert

Befähigungen

- aufwendig (entfernt)
- aufwendig (entfernt)
- einfach (lokal)
- einfach (Zugriff)
- aufwendig (Sammelruf)
- dezentral gespeichert

Sicherheit

- Schutz (protection) vor unautorisierten Zugriffen durch Prozesse, der in Körnigkeit und Funktion sehr unterschiedlich ausgelegt sein kann:
 - i jeden Prozessadressraum in Isolation betreiben
 - Schutz durch Eingrenzung oder Segmentierung
 - Zugriffsfehler führen zum Abbruch der Programmausführung
 - i.A. keine selektive Zugriffskontrolle möglich und sehr grobkörnig
 - ii Prozessen eine Befähigung (capability [3, 29, 6]) zum Zugriff erteilen
 - den verschiedenen **Subjekten** (Prozesse) individuelle Zugriffsrechte geben, z.B., ausführen, lesen, schreiben oder ändern dürfen
 - und zwar auf dasselbe von ihnen mitbenutzte **Objekt** (Datum, Datei, Gerät, Prozedur. Prozess)
 - iii Objekten eine Zugriffskontrollliste (access control list, ACL [26]) geben
 - ein Listeneintrag legt das Zugriffsrecht eines Subjekts auf das Objekt fest
 - vereinfacht auch in "Besitzer/in-Gruppe-Welt"-Form (user/group/world)

Problem:

• verdeckter Kanal (covered channel) bzw. Seitenkanal

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4.2 Systemmerkmale – Schutzvorkehrungen VII.2/22

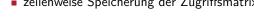
Methodologie: Zugriffsmatrix

access matrix [15, 9]

in diesem allgemeinen Modell spezifiziert jeder Eintrag in der Matrix das individuelle Zugriffsrecht eines Subjekts auf ein Objekt:

Subjekte	Objekte				
	Cyan	Grau	Blau	read	R
1	R/X	R/W	_	write	W
2	_	R	_	execute	X

je nach Abspeicherung und Verwendung der in der Matrix kodierten Information ergeben sich verschiedene Implementierungsoptionen:


Totalsicht • in Form einer systembezogenen Zugriffstabelle

• ineffizient, wegen der i.d.R. dünn besetzten Matrix

Objektsicht • in Form einer objektbezogenen **Zugriffskontrollliste**

spaltenweise Speicherung der Zugriffsmatrix

Subjektsicht ■ in Form subjektbezogener **Befähigungen** zeilenweise Speicherung der Zugriffsmatrix

(3)

(3)

Bahnbrecher und Wegbereiter III

- Multics (Multiplexed Information and Computing Service [21], 1965)
 - setzt den Maßstab in Bezug auf Adressraum-/Speicherverwaltung:
 - 1. jede im System gespeicherte abrufbare Information ist direkt von einem Prozessor adressierbar und jeder Berechnung referenzierbar
 - 2. jede Referenzierung unterliegt einer durch Hardwareschutzringe implementierten mehrstufigen Zugriffskontrolle [27, 25]
 - ringgeschützte seitennummerierte Segmentierung (ring-protected paged segmentation)
 - das ursprüngliche Konzept (für den GE 645) sah 64 Ringe vor, letztendlich bot die Hardware (Honeywell 6180) Unterstützung für acht Ringe
 - nicht in Hardware implementierte Ringe wurden durch Software emuliert
 - eng mit dem Segmentkonzept verbunden war dynamisches Binden
 - jede Art von Information, ob Programmtext oder -daten, war ein Segment
 - Segmente konnten bei Bedarf (on demand) geladen werden
 - Zugriff auf ungeladenes Segment bedeutete Bindungsfehler (linkage fault)
 - in Folge machte eine **Bindelader** (*linking loader*) das Segment verfügbar

Problem:

Hardwareunterstützung

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4.2 Systemmerkmale – Schutzvorkehrungen VII.2/25

Grad an Mehrprogrammbetrieb

- die selektive Überlagerung des Hauptspeichers durch programmiertes dynamisches Laden (overlay) hat seine Grenzen
 - Anzahl × Größe hauptspeicherresidenter Text-/Datenbereiche begrenzt die Anzahl der gleichzeitig zur Ausführung vorgehaltenen Programme
 - variabler Wert, abhängig von Struktur/Organisation der Programme und den Fähigkeiten der Programmierer/innen
- Umlagerung der Speicherbereiche gegenwärtig nicht ausführbereiter Programme (swapping) verschiebt die Grenze nach hinten
 - schafft Platz für ein oder mehrere andere (zusätzliche) Programme
 - lässt mehr Programme zu, als insgesamt in den Hauptsspeicher passt
- Berücksichtigung solcher Bereiche der sich in Ausführung befindlichen Programme (paging, segmentation) gibt weiteren Spielraum [2]
 - im Unterschied zu vorher werden nur Teile eines Programms umgelagert
 - Programme liegen nur scheinbar ("virtuell") komplett im Hauptspeicher
- Prozesse belegen Arbeitsspeicher, nämlich den zu einem bestimmten Zeitpunkt beanspruchten Verbund von Haupt- und Ablagespeicher

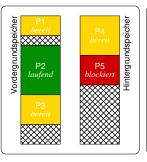
Schutzringe: Multics

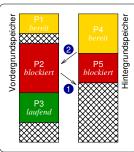
- Verwendung der Schutzringe:
 - 0-3 Betriebssystem
 - 0-1 Hauptsteuerprogramm
 - 2-3 Dienstprogramme
 - 4–7 Anwendungssystem
 - 4–5 Benutzerprogramme
 - 6–7 Subsysteme
- Ringwechsel, Zugriffe
 - kontrolliert durch die Hardware
- je nach Prozessattribut/-aktion sind Ringfehler (ring fault) möglich
 - Folge ist die Teilinterpretation der Operation auf Ring 0 (*supervisor*)
 - unautorisierte Operationen führen zum **Schutzfehler** (protection fault)

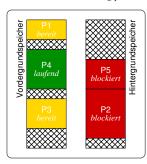
eingeschränkt

Zugriffsrechte

- Problem:
 - Schichtenstruktur, Ringzuordnung: funktionale Hierarchie [11]


SP (28. Juli 2022 (nicht als Präsenzvorlesung))


4.2 Systemmerkmale – Schutzvorkehrungen VII.2/26


Honeywell 6180

Umlagerung nicht ausführbereiter Programme

Funktion der mittelfristigen Einplanung (medium-term scheduling)

Ausgangssituation:

■ P[1-3] im RAM

■ P2 belegt die CPU

- Umlagerung:
- 1. P2 swap out
- 2. P4 swap in
- Resultat:
- P[134] im RAM
- P4 belegt die CPU

- Problem:
 - Fragmentierung, Verdichtung, Körnigkeit

Umlagerung laufender Programme

- Prozesse schreiten voran, obwohl die sie kontrollierenden Programme nicht komplett im Hauptspeicher vorliegen: virtueller Speicher [10]
 - die von einem Prozess zu einem Zeitpunkt scheinbar nicht benötigten Programmteile liegen im Hintergrund, im Ablagespeicher
 - sie werden erst bei Bedarf (on demand) nachgeladen
 - ggf. sind als Folge andere Programmteile vorher zu verdrängen
 - Zugriffe auf ausgelagerte Programmteile unterbrechen die Prozesse und werden durch partielle Interpretation ausgeführt
 - logisch bleibt der unterbrochene Prozess weiter in Ausführung
 - physisch wird er jedoch im Zuge der Einlagerung (E/A) blockieren
 - Aus- und Einlagerung wechseln sich mehr oder wenig intensiv ab

Problem:

■ Lade- und Ersetzungsstrategien, Arbeitsmenge (working set)

Hauptspeicherüberbuchung und -überbelegung

Der Platzbedarf der scheinbar (virtuell) komplett im Hauptspeicher liegenden und laufenden Programme kann die Größe des wirklichen (realen) Hauptspeichers weit überschreiten.

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4.3 Systemmerkmale – Speicherverwaltung VII.2/29

Automatische Überlagerung

Partielle Interpretation

- seiten- und/oder segmentbasierte Umlagerung zeigt Ähnlichkeiten zur Überlagerungstechnik (overlay), jedoch:
 - die Seiten-/Segmentanforderungen sind nicht im Maschinenprogramm zu finden, stattdessen im Betriebssystem (pager, segment handler)
 - die Anforderungen stellt stellvertretend ein Systemprogramm
 - Ladeanweisungen sind so vor dem Maschinenprogramm verborgen
 - Zugriffe auf ausgelagerte Seiten/Segmente fängt die Befehlssatzebene ab, die sie dann ans Betriebssystem weiterleitet (trap)
 - das Maschinenprogramm wird von CPU bzw. MMU unterbrochen
 - der gescheiterte Zugriff wird vom Betriebssystem partiell interpretiert
- des Weiteren fällt die Wiederholung des unterbrochenen Befehls an. die vom Betriebssystem zu veranlassen ist
 - der Speicherzugriff scheiterte beim Befehls- oder Operandenabruf
 - die CPU konnte die Operation noch nicht vollständig ausführen (rerun)

Problem:

Komplexität, Determiniertheit

Granularität der Umlagerungseinheiten

Programmteile, die ein-, aus- und/oder überlagert werden können. sind Seiten oder Segmente:

Seitennummerierung (paging) Atlas [7]

- Einheiten (von Bytes) fester Größe
- **Problem**: interne Fragmentierung ~ "false positive" (Adresse)

Segmentierung (segmentation) B 5000 [20]

- Einheiten (von Bytes) variabler Größe
- **Problem**: externe Fragmentierung ~> "false negative" (Bruchstücke)

seitennummerierte Segmentierung (paged segmentation)³ GE 635 [8]

- Kombination beider Verfahren: Segmente aber in Seiten untergliedern
- Problem: interne Fragmentierung (wegen Seitennummerierung)
- sie werden abgebildet auf gleich große Einheiten des Hauptspeichers (eingelagert) oder Ablagespeichers (ausgelagert)
- Problem:
 - Fragmentierung (des Arbeitsspeichers) ~ Verschnitt

³Beachte: nicht "segmentierte Seitenadressierung" (segmented paging)!

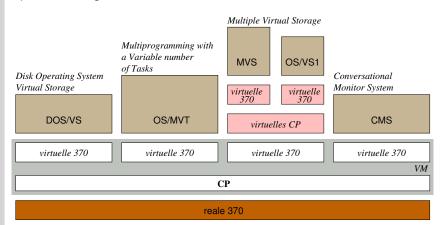
SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4.3 Systemmerkmale – Speicherverwaltung VII.2/30

Universalbetriebssystem

(general purpose operating system)

bei einem Betriebssystem handelt es sich um Software, die zwischen Baum und Borke steckt, womit sich ein Dilemma ergibt


Lister, "Fundamentals of Operating Systems" [19]

- Clearly, the operating system design must be strongly influenced by the type of use for which the machine is intended.
- Unfortunately it is often the case with 'general purpose machines' that the type of use cannot easily be identified;
- a common criticism of many systems is that, in attempting to be all things to all individuals, they end up being totally satisfactory to no-one.
- ein Allzweckbetriebssystem ist geprägt von Kompromissen, die sich quer durch die Implementierung ziehen
 - damit Echtzeitbetrieb aber ausschließen, der kompromisslos sein muss!
- Ansätze für verbesserte Akzeptanz sind Virtualisierung einerseits und ..Konzentration auf das Wesentliche" andererseits
 - auch damit bleibt ein Betriebssystem domänenspezifische Software

Virtualisierung

VM 370 (IBM, 1968)

Spezialisierung durch virtuelle Maschinen:

CP Abk. für control program: Hypervisor, VMM

■ Selbstvirtualisierung (para/voll, [13, S. 30]) des realen System/370

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4.4 Systemmerkmale – Universalität

VII.2/33

Gliederung

Mehrzugangsbetrieb

Multiprozessoren

Zusammenfassung

Konzentration auf das Wesentliche Programmierwerkbank [12]

UNIX [23, 18, 17]

■ ein Betriebssystemkern von 10⁴ Zeilen C und nicht 10⁶ Zeilen PL/I

Multics UNICS

Multiplexed ←⇒ Uniplexed Information and Computing Service

ITS nicht zu vergessen (S. 10)

"Lotta hat einen Unixtag", Astrid Lindgren [16, S. 81–89]

Die drei Jahre alte Lotta ist die kleine Schwester der Erzählerin. Läuft am Tag vieles schief bei ihr, sagt sie "Unixtag", meint aber "Unglückstag".

$UNIX \stackrel{?}{\mapsto} Unglück \stackrel{?}{\mapsto} macOS/Linux$

Vom ursprünglichen Ansatz eines nur wesentliche Dinge enthaltenes, schlankes Betriebssystem ist heute wenig zu spüren.

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

4.4 Systemmerkmale – Universalität

VII.2/34

2%

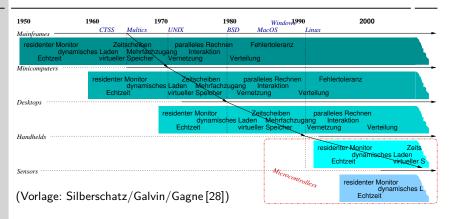
Stand der Kunst⁴

Viel Getöse für altbackene Technik?

- **Linux** "yet another UNIX-like operating system", aber was soll's...
 - Entwicklungsprozess und -modell sind der eigentliche "Kick"
 - 70er-Jahre Technologie ohne Multics (funktional) zu erreichen
- **Windows** "new technology", wirklich?
 - vor WNT entwickelte Cuttler VMS (DEC): WNT = VMS + 1
 - nach wie vor Marktführer im PC-Sektor

77 %

- macOS, ein vergleichsweise echter Fortschritt?
 - solides UNIX (FreeBSD) auf solider Mikrokernbasis (Mach)
 - Apple bringt PC-Technologie erneut voran


18%

"Des Kaisers neue Kleider"

Funktionsumfang wie auch Repräsentation vermeintlich moderner Betriebssysteme lässt den Schluss zu, dass so einige Male das Rad neu erfunden wurde.

Migration von Betriebssystemkonzepten

- Fähigkeit zur "Wanderung" zu anderen, kleineren Gefilden fällt nicht vom Himmel, sondern bedarf sorgfältiger Konzeptumsetzung
- Voraussetzung dafür ist eine Domänenanalyse, um gemeinsame und variable Konzeptanteile zu identifizieren

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

5. Zusammenfassung

VII.2/37

Literaturverzeichnis |

- [1] CORBATÓ, F. J.; MERWIN-DAGGETT, M.; DALEX, R. C.: An Experimental Time-Sharing System. In: Proceedings of the AIEE-IRE '62 Spring Joint Computer Conference, ACM, 1962, S. 335-344
- Denning, P. J.: Virtual Memory. In: Computing Surveys 2 (1970), Sept., Nr. 3, S. 153-189
- [3] DENNIS, J. B.; HORN, E. C. V.: Programming Semantics for Multiprogrammed Computations. In: Communications of the ACM 9 (1966), März, Nr. 3, S. 143–155
- Deutsches Institut für Normung: Informationsverarbeitung — Begriffe. Berlin, Köln, 1985 (DIN 44300)
- EASTLAKE, D. E.; GREENBLATT, R. D.; HOLLOWAY, J. T.; KNIGHT, T. F.; Nelson. S.: ITS 1.5 Reference Manual / MIT. Cambridge, MA, USA, Jul. 1969 (AIM-161A). -Forschungsbericht

Resümee

... die eierlegende Wollmilchsau gibt es nicht!

- Mehrzugangsbetrieb ermöglicht Arbeit und Umgang mit einem Rechensystem über mehrere Dialogstationen
 - im Teilnehmerbetrieb setzen Dialogstationen eigene Dialogprozesse ab
 - im Teilhaberbetrieb teilen sich Dialogstationen einen Dialogprozess
- Echtzeitbetrieb muss kompromisslos sein, da das Zeitverhalten des Rechensystems sonst unvorhersehbar ist
 - Zustandsänderung von Programmen wird zur Funktion der realen Zeit
 - "Zeit" ist keine intrinsische Eigenschaft des Rechensystems mehr
 - "externe Prozesse" definieren Terminvorgaben, die einzuhalten sind
 - die Echtzeitbedingungen dabei gelten als weich, fest oder hart
- wichtige **Systemmerkmale** insbesondere für Mehrzugangsbetrieb:
 - Parallelverarbeitung durch (speichergekoppelte) Multiprozessoren
 - über bloße Adressraumisolation hinausgehende Schutzvorkehrungen
 - auf Programm(teil)umlagerung ausgerichtete Speicherverwaltung
- Allzweckbetriebssysteme sind universal, indem sie Fähigkeiten für die verschiedensten Bereiche umfassen — aber nicht für alle...

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

5. Zusammenfassung

VII.2/38

Literaturverzeichnis II

FABRY, R. S.:

Capability-Based Addressing.

In: Communications of the ACM 17 (1974), Jul., Nr. 7, S. 403–412

FOTHERINGHAM, J. :

Dynamic Storage Allocation in the Atlas Computer, Including an Automatic Use of a Backing Store.

In: Communications of the ACM 4 (1961), Okt., Nr. 10, S. 435-436

GENERAL ELECTRIC COMPANY (Hrsg.):

GE-625/635 Programming Reference Manual.

CPB-1004A.

Phoenix, AZ, USA: General Electric Company, Jul. 1964

GRAHAM, G. S.; DENNING, P. J.:

Protection—Principles and Practice.

In: 1972 Proceedings of the Spring Joint Computer Conference, May 6-8, 1972, Atlantic City, USA American Federation of Information Processing Societies, AFIPS Press, 1972, S. 417-429

Literaturverzeichnis III

[10] GÜNTSCH, F.-R.:

Logischer Entwurf eines digitalen Rechengeräts mit mehreren asynchron laufenden Trommeln und automatischem Schnellspeicherbetrieb, Technische Universität Berlin, Diss., März 1957

[11] HABERMANN, A. N.; FLON, L.; COOPRIDER, L. W.: Modularization and Hierarchy in a Family of Operating Systems. In: Communications of the ACM 19 (1976), Mai, Nr. 5, S. 266-272

[12] KERNIGHAN, B. W.:

UNIX: A History and a Memoir.

Kindle Direct Publishing, 2020. -ISBN 978-169597855-3

[13] KLEINÖDER, J.; SCHRÖDER-PREIKSCHAT, W.:

Virtuelle Maschinen.

In: Lehrstuhl Informatik 4 (Hrsg.): Systemprogrammierung. FAU Erlangen-Nürnberg, 2015 (Vorlesungsfolien), Kapitel 5.1

[14] KOPETZ, H. :

Real-Time Systems: Design Principles for Distributed Embedded Applications. Kluwer Academic Publishers, 1997. -ISBN 0-7923-9894-7

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

5.1 Zusammenfassung – Bibliographie

VII.2/41

Literaturverzeichnis V

[19] LISTER, A. M.; EAGER, R. D.: Fundamentals of Operating Systems.

The Macmillan Press Ltd., 1993. -ISBN 0-333-59848-2

[20] MAYER, A. J. W.:

The Architecture of the Burroughs B5000: 20 Years Later and Still Ahead of the

In: ACM SIGARCH Computer Architecture News 10 (1982), Jun., Nr. 4, S. 3–10

[21] Organick, E. I.:

The Multics System: An Examination of its Structure. MIT Press, 1972. -ISBN 0-262-15012-3

[22] POUZON, L.:

The Origin of the Shell.

In: Multics Home.

Multicians, 2000, Kapitel http://www.multicians.org/shell.html

[23] RITCHIE, D. M.; THOMPSON, K.:

The UNIX Time-Sharing System.

In: Communications of the ACM 17 (1974), Jul., Nr. 7, S. 365-374

Literaturverzeichnis IV

[15] LAMPSON, B. W.:

Protection.

In: Proceedings of the Fifth Annual Princeton Conference on Information Sciences

New Jersey, USA: Department of Electrical Engineering, Princeton University, März 1971, S. 437-443

[16] Kapitel Lotta hat einen Unixtag.

In: LINDGREN. A.:

Die Kinder aus der Krachmacherstraße. Oettinger-Verlag, 1957. – ISBN 3-7891-4118-6, S. 81-89

[17] Lions, J. :

A Commentary on the Sixth Edition UNIX Operating System.

The University of New South Wales, Department of Computer Science, Australia: http://www.lemis.com/grog/Documentation/Lions, 1977

[18] Lions, J. :

UNIX Operating System Source Code, Level Six.

The University of New South Wales, Department of Computer Science, Australia: http://v6.cuzuco.com, Jun. 1977

SP (28. Juli 2022 (nicht als Präsenzvorlesung))

5.1 Zusammenfassung – Bibliographie

VII.2/42

Literaturverzeichnis VI

[24] ROBERTS, L. G.:

Multiple Computer Networks and Intercomputer Communication.

In: Gosden, J. (Hrsg.); Randell, B. (Hrsg.): Proceedings of the First ACM Symposium on Operating System Principles (SOSP '67), October 1-4, 1967, Gatlinburg, TN, USA, ACM, 1967, S. 3.1-3.6

[25] SALTZER, J. H.:

Protection and the Control of Information Sharing in Multics. In: Communications of the ACM 17 (1974), Jul., Nr. 7, S. 388–402

[26] Saltzer, J. H.; Schroeder, M. D.:

The Protection of Information in Computer Systems. In: Proceedings of the IEEE 63 (1975), Sept., Nr. 9, S. 1278-1308

[27] Schroeder, M. D.; Saltzer, J. H.:

A Hardware Architecture for Implementing Protection Rings.

In: Proceedings of the Third ACM Symposium on Operating System Principles (SOSP 1971), October 18-20, 1971, Palo Alto, California, USA, ACM, 1971, S. 42-54

Literaturverzeichnis VII

```
[28] SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G.:
Operating System Concepts.
John Wiley & Sons, Inc., 2001. –
ISBN 0-471-41743-2

[29] WULF, W. A.; COHEN, E. S.; CORWIN, W. M.; JONES, A. K.; LEVIN, R.;
PIERSON, C.; POLLACK, F. J.:
HYDRA: The Kernel of a Multiprocessor Operating System.
In: Communications of the ACM 17 (1974), Jun., Nr. 6, S. 337–345
```

