
opendir/readdir(3) opendir/readdir(3)

NAME
opendir − open a directory / readdir − read a directory

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);

DESCRIPTION opendir
The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
The opendir() function returns a pointer to the directory stream or NULL if an error occurred.

DESCRIPTION readdir
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the
directory stream pointed to by dir. It returns NULL on reaching the end-of-file or if an error occurred.

The data returned by readdir() is overwritten by subsequent calls to readdir() for the same directory
stream.

The dirent structure is defined as follows:

struct dirent {
long d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file */
char d_name[256]; /* filename */

};

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

ERRORS
EACCES

Permission denied.

EMFILE
Too many file descriptors in use by process.

ENFILE
Too many files are currently open in the system.

ENOENT
Directory does not exist, or name is an empty string.

ENOMEM
Insufficient memory to complete the operation.

ENOTDIR
name is not a directory.

SEE ALSO
open(2), readdir(3), closedir(3), rewinddir(3), seekdir(3), telldir(3), scandir(3)

SPI-Klausur Manual-Auszug 2003-02-12 1

exec(2) exec(2)

NAME
exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS
#include <unistd.h>

int execl(const char * path, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execv(const char * path, char *const argv[]);

int execle(const char * path,char *const arg0[], . . . , const char *argn,
char * /*NULL*/, char *const envp[]);

int execve (const char * path, char *const argv[] char *const envp[]);

int execlp (const char * file, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execvp (const char * file, char *const argv[]);

DESCRIPTION
Each of the functions in the exec family overlays a new process image on an old process. The new process
image is constructed from an ordinary, executable file. This file is either an executable object file, or a file
of data for an interpreter. There can be no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int argc, char ∗ argv[], char ∗ envp[]);

where argc is the argument count, argv is an array of character pointers to the arguments themselves, and
envp is an array of character pointers to the environment strings. As indicated, argc is at least one, and the
first member of the array points to a string containing the name of the file.

The arguments arg0, . . ., argn point to null-terminated character strings. These strings constitute the argu-
ment list available to the new process image. Conventionally at least arg0 should be present. The arg0
argument points to a string that is the same as path (or the last component of path). The list of argument
strings is terminated by a (char ∗)0 argument.

The argv argument is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process image. By convention, argv must have at least one member, and
it should point to a string that is the same as path (or its last component). The argv argument is terminated
by a null pointer.

The path argument points to a path name that identifies the new process file.

The file argument points to the new process file. If file does not contain a slash character, the path prefix for
this file is obtained by a search of the directories passed in the PATH environment variable (see environ(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process
image (see signal(3C)). Otherwise, the new process image inherits the signal dispositions of the calling
process.

RETURN VALUES
If a function in the exec family returns to the calling process, an error has occurred; the return value is −1
and errno is set to indicate the error.

SPI-Klausur Manual-Auszug 2003-02-12 1

fopen(3S) fopen(3S)

NAME
fopen − open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * filename, const char *mode);

DESCRIPTION
The fopen() function opens the file whose pathname is the string pointed to by filename, and associates a
stream with it.

The argument mode points to a string beginning with one of the following sequences:
r or rb open file for reading
w or wb truncate to zero length or create file for writing
a or ab append; open or create file for writing at end-of-file
r+ or rb+ or r+b open file for update (reading and writing)
w+ or wb+ or w+b truncate to zero length or create file for update
a+ or ab+ or a+b append; open or create file for update, writing at end-of-file

The character b has no effect, but is allowed for ISO C standard conformance. Opening a file with read
mode (r as the first character in the mode argument) fails if the file does not exist or cannot be read.

When a file is opened with update mode (+ as the second or third character in the mode argument), both
input and output may be performed on the associated stream. However, output must not be directly fol-
lowed by input without an intervening call to fflush(3S) or to a file positioning function (fseek(3S), fset-
pos(3S) or rewind(3S)), and input must not be directly followed by output without an intervening call to a
file positioning function, unless the input operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an interactive
device. The error and end-of-file indicators for the stream are cleared.

If mode is w, a, w+ or a+ and the file did not previously exist, upon successful completion, fopen() func-
tion will mark for update the st_atime, st_ctime and st_mtime fields of the file and the st_ctime and
st_mtime fields of the parent directory.

If mode is w or w+ and the file did previously exist, upon successful completion, fopen() will mark for
update the st_ctime and st_mtime fields of the file. The fopen() function will allocate a file descriptor as
open(2) does.

The largest value that can be represented correctly in an object of type off_t will be established as the offset
maximum in the open file description.

RETURN VALUES
Upon successful completion, fopen() returns a pointer to the object controlling the stream. Otherwise, a
null pointer is returned, and errno is set to indicate the error.

fopen() may fail and not set errno if there are no free stdio streams.

ERRORS
The fopen() function will fail if:

EACCES Search permission is denied on a component of the path prefix, or the file exists and the
permissions specified by mode are denied, or the file does not exist and write permission
is denied for the parent directory of the file to be created.

EINTR A signal was caught during fopen().

EISDIR The named file is a directory and mode requires write access.

SEE ALSO
fclose(3S), fdopen(3S), fflush(3S), freopen(3S), fsetpos(3S), rewind(3S),

SPI-Klausur Manual-Auszug 2003-02-12 1

gets(3S) gets(3S)

NAME
gets, fgets − get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

DESCRIPTION
The gets() function reads characters from the standard input stream (see intro(3)), stdin, into the array
pointed to by s, until a newline character is read or an end-of-file condition is encountered. The newline
character is discarded and the string is terminated with a null character.

The fgets() function reads characters from the stream into the array pointed to by s, until n−1 characters
are read, or a newline character is read and transferred to s, or an end-of-file condition is encountered. The
string is then terminated with a null character.

When using gets(), if the length of an input line exceeds the size of s, indeterminate behavior may result.
For this reason, it is strongly recommended that gets() be avoided in favor of fgets().

RETURN VALUES
If end-of-file is encountered and no characters have been read, no characters are transferred to s and a null
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, the EOF indicator for the stream is set. Otherwise s is returned.

ERRORS
The gets() and fgets() functions will fail if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset maxi-
mum associated with the corresponding stream.

SEE ALSO
lseek(2), read(2), ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S), stdio(3S), ungetc(3S),
attributes(5)

SPI-Klausur Manual-Auszug 2003-02-12 1

sigaction(2) sigaction(2)

NAME
sigaction − POSIX signal handling functions.

SYNOPSIS
#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

DESCRIPTION
The sigaction system call is used to change the action taken by a process on receipt of a specific signal.

signum specifies the signal and can be any valid signal except SIGKILL and SIGSTOP.

If act is non−null, the new action for signal signum is installed from act. If oldact is non−null, the previous
action is saved in oldact.

The sigaction structure is defined as something like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}

On some architectures a union is involved - do not assign to both sa_handler and sa_sigaction.

The sa_restorer element is obsolete and should not be used. POSIX does not specify a sa_restorer ele-
ment.

sa_handler specifies the action to be associated with signum and may be SIG_DFL for the default action,
SIG_IGN to ignore this signal, or a pointer to a signal handling function.

sa_mask gives a mask of signals which should be blocked during execution of the signal handler. In addi-
tion, the signal which triggered the handler will be blocked, unless the SA_NODEFER or SA_NOMASK
flags are used.

sa_flags specifies a set of flags which modify the behaviour of the signal handling process. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signum is SIGCHLD, do not receive notification when child processes stop (i.e., when
child processes receive one of SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU).

SA_RESTART
Provide behaviour compatible with BSD signal semantics by making certain system calls
restartable across signals.

RETURN VALUES
sigaction returns 0 on success and -1 on error.

ERRORS
EINVAL

An invalid signal was specified. This will also be generated if an attempt is made to change the
action for SIGKILL or SIGSTOP, which cannot be caught.

SEE ALSO
kill(1), kill(2), killpg(2), pause(2), sigsetops(3),

SPI-Klausur Manual-Auszug 2003-02-12 1

sigsuspend/sigprocmask(2) sigsuspend/sigprocmask(2)

NAME
sigprocmask − change and/or examine caller’s signal mask
sigsuspend − install a signal mask and suspend caller until signal

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

int sigsuspend(const sigset_t *set);

DESCRIPTION sigprocmask
The sigprocmask() function is used to examine and/or change the caller’s signal mask. If the value is
SIG_BLOCK, the set pointed to by the argument set is added to the current signal mask. If the value is
SIG_UNBLOCK, the set pointed by the argument set is removed from the current signal mask. If the value
is SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argument set. If the
argument oset is not NULL, the previous mask is stored in the space pointed to by oset. If the value of the
argument set is NULL, the value how is not significant and the caller’s signal mask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of those signals will
be delivered before the call to sigprocmask() returns.

It is not possible to block those signals that cannot be ignored this restriction is silently imposed by the sys-
tem. See sigaction(2).

If sigprocmask() fails, the caller’s signal mask is not changed.

RETURN VALUES
On success, sigprocmask() returns 0. On failure, it returns −1 and sets errno to indicate the error.

ERRORS
sigprocmask() fails if any of the following is true:

EFAULT set or oset points to an illegal address.

EINVAL The value of the how argument is not equal to one of the defined values.

DESCRIPTION sigsuspend
sigsuspend() replaces the caller’s signal mask with the set of signals pointed to by the argument set and
then suspends the caller until delivery of a signal whose action is either to execute a signal catching func-
tion or to terminate the process.

If the action is to terminate the process, sigsuspend() does not return. If the action is to execute a signal
catching function, sigsuspend() returns after the signal catching function returns. On return, the signal
mask is restored to the set that existed before the call to sigsuspend().

It is not possible to block those signals that cannot be ignored (see signal(5)); this restriction is silently
imposed by the system.

RETURN VALUES
Since sigsuspend() suspends process execution indefinitely, there is no successful completion return value.
On failure, it returns −1 and sets errno to indicate the error.

ERRORS
sigsuspend() fails if either of the following is true:

EFAULT set points to an illegal address.

EINTR A signal is caught by the calling process and control is returned from the signal catching
function.

SEE ALSO
sigaction(2), sigsetops(3C),

SPI-Klausur Manual-Auszug 2003-02-12 1

sigsetops(3C) sigsetops(3C)

NAME
sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember − manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

DESCRIPTION
These functions manipulate sigset_t data types, representing the set of signals supported by the implemen-
tation.

sigemptyset() initializes the set pointed to by set to exclude all signals defined by the system.

sigfillset() initializes the set pointed to by set to include all signals defined by the system.

sigaddset() adds the individual signal specified by the value of signo to the set pointed to by set.

sigdelset() deletes the individual signal specified by the value of signo from the set pointed to by set.

sigismember() checks whether the signal specified by the value of signo is a member of the set pointed to
by set.

Any object of type sigset_t must be initialized by applying either sigemptyset() or sigfillset() before
applying any other operation.

RETURN VALUES
Upon successful completion, the sigismember() function returns a value of one if the specified signal is a
member of the specified set, or a value of 0 if it is not. Upon successful completion, the other functions
return a value of 0. Otherwise a value of −1 is returned and errno is set to indicate the error.

ERRORS
sigaddset(), sigdelset(), and sigismember() will fail if the following is true:

EINVAL The value of the signo argument is not a valid signal number.

sigfillset() will fail if the following is true:

EFAULT The set argument specifies an invalid address.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attributes(5), signal(5)

SPI-Klausur Manual-Auszug 2003-02-12 1

unlink(2) unlink(2)

NAME
unlink − remove directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char * path);

DESCRIPTION
The unlink() function removes a link to a file. It removes the link named by the pathname pointed to by
path and decrements the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the file will be
freed and the file will no longer be accessible. If one or more processes have the file open when the last
link is removed, the link will be removed before unlink() returns, but the removal of the file contents will
be postponed until all references to the file are closed.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS
The unlink() function will fail and not unlink the file if:

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the link to be removed.

ENOENT The named file does not exist or is a null pathname.

ENOTDIR A component of the path prefix is not a directory.

EPERM The named file is a directory and the effective user of the calling process is not super-
user.

SEE ALSO
rm(1), close(2), link(2), open(2), rmdir(2),

SPI-Klausur Manual-Auszug 2003-02-12 1

