&xec(2)

exec, execl, execv, execle, execve, eeclp, execvp — execute a file

SYNOPSIS

#include <unistd.h>
int execl(const char *path, const char *arg0, ..., const char *argn, char * /*NULL*/);
int execv(const char *path, char *const argv[]);

int execle(const char path,char *constargO[], ..., onst char *argn,
char * /*NULL*/, char *const ervp[]);

int execwe (const char *path, char *const argv[] char *consternvp[]);
int execlp (const char *file, const char *arg0, ..., const char *argn, char * /*NULL*/);

int execvp (const char *ile, char *const argv[]);

DESCRIPTION

Each of the functions in thexecfamily overlays a na process image on an old process. The pecess

image is constructed from an ordinagyecutable file. This file is either axeeutable object file, or a file

of data for an interpretefThere can be no return from a successful call to one of these functions because
the calling process image isevlaid by the ner process image.

When a C program iscecuted, it is called as follows:
int main (int argc, char Cargv[], char Cenvp[]);

whereargc is the argument counargv is an array of character pointers to the arguments themselves, and
envpis an array of character pointers to the environment strings. As indieageds at least one, and the
first member of the array points to a string containing the name of the file.

The agumentsargQ, ..., argn point to null-terminated character stringBhese strings constitute theyar
ment list @ailable to the n& process image Conventionally at leastrg0 should be presentThe arg0
argument points to a string that is the sameath (or the last component ghath). Thelist of agument
strings is terminated by(ahar)0 argument.

Theargv agument is an array of character pointers to null-terminated strings. These strings constitute the
argument list gailable to the n& process image. By ceention, argv must hae & least one membesnd

it should point to a string that is the samepath (or its last component)Theargv agument is terminated

by a null pointer.

Thepath argument points to a path name that identifies thepnecess file.

Thefile agument points to the meprocess file.If file does not contain a slash charadtez path prefix for
this file is obtained by a search of the directories passed RATieenvironment variable (sesmwviron(5)).

File descriptors open in the calling process remain open in thereess.

Signals that are being caught by the calling process are set to the default disposition \n phecess
image (seesignal3C)). Otherwisethe nev process image inherits the signal dispositions of the calling
process.

RETURN VALUES

If a function in theexecfamily returns to the calling process, an error has occurred; the return vailie is
anderrno is set to indicate the error.

SP-Klausur Manual-Auszug 2017-08-01 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc - Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nmemb, size t size);
void *malloc(size_t size);
void freg(void *ptr);
void *realloc(void *ptr, size t size);
DESCRIPTION
calloc() allocates memory for an array minemb elements okize bytes each and returns a pointer to the
allocated memoryThe memory is set to zero.

malloc() allocatessize bytes and returns a pointer to the allocated membing memory is not cleared.

free() frees the memory space pointed toptry, which must hee been returned by a previous callrtal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined\heha
occurs. Ifptr is NULL, no gperation is performed.

realloc() changes the size of the memory block pointed tetoyto size bytes. Thecontents will be
unchanged to the minimum of the old anavrszes; newly allocated memory will be uninitialize. ptr
is NULL, the call is equialent tomalloc(size); if size is equal to zero, the call is eealént tofree(ptr).
Unlessptr is NULL, it must hare been returned by an earlier callrtalloc(), calloc() or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memdrigh is suitably aligned
for ary kind of variable, oNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memuaityich is suitably aligned for grkind of variable
and may be different frorptr, or NULL if the request fails. IEize was equal to O, either NULL or a
pointer suitable to be passedites() is returned.If realloc() fails the original block is left untouched - it is
not freed or meed.

CONFORMING TO
ANSI-C

SEE ALSO
brk(2), posix_memalign(3)

SP-Klausur Manual-Auszug 2017-08-01 1

memset(3) memset(3)

NAME
memeset - fill memory with a constant byte

SYNOPSIS
#include <string.h>

void *memset(void *s, int ¢, size_t n);

DESCRIPTION
Thememset() function fills the firsh bytes of the memory area pointed todwith the constant byte.

RETURN VALUE
Thememset() function returns a pointer to the memory asea

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, C89, C99, SVr4, 4.3BSD.

SEE ALSO
bstring(3), bzero(3), swab(3), wmemset(3)

SP-Klausur Manual-Auszug 2017-08-01 1

printf(3) printf(3)

NAME

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf - formatted output easion
SYNOPSIS

#include <stdio.h>

int printf(const char * format, ...);

int fprintf(FILE * stream const char *format, ...);

int sprintf(char * str, const char *format, ...);

int snprintf(char * str, sze_tsize const char *format, ...);

DESCRIPTION
The functions in therintf () family produce output according td@matas described belo The function
printf () writes output tostdout the standard output strearprintf () writes output to the gen output
stream sprintf () andsnprintf (), write to the character strirsgr.

The functionsnprintf () writes at mossizebytes (including the trailing null byte (\0')) $tr.

These functions write the output under the control @renat string that specifies mosubsequent gu-
ments (or ayuments accessed via the variable-length argument facilitistdafg(3)) are cowmerted for
output.

Return value

Upon successful return, these functions return the number of characters printed (not including the trailing

\0' used to end output to strings).
The functionssnprintf () andvsnprintf () do not write more thasizebytes (including the trailing "\0')If

the output was truncated due to this limit then the retatmevis the number of characters (not including

the trailing "\0') which wuld have been written to the final string if enough space had begtalble. Thus,
a return value oBizeor more means that the output was truncated.

If an output error is encountered, ayatéve value is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift statg, iTla@ format
string is composed of zero or more direesi ordinary characters (n®), which are copied unchanged to

the output stream; and oa@nsion specifications, each of which results in fetching zero or more subsequent

amguments. Eacleorversion specification is introduced by the charaéterand ends with aonversion
specifier In between there may be (in this order) zero or nflags an gotional minimumfield width an
optionalprecisionand an optiondength modifier

The corversion specifier
A character that specifies the type of wamion to be applied. An example for a eersion specifier is:
o, U, X, X
The unsigned infargument is coverted to unsigned octab), unsigned decimauj, or unsigned
hexadecimalX andX) notation.

s The const char *argument is gpected to be a pointer to an array of character type (pointer to a
string). Characterfrom the array are written up to (but not including) a terminating null byte
(\0"; if a precision is specified, no more than the number specified are written. If a precision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the arraythe array must contain a terminating null byte.

SEE ALSO

printf (1), asprintf(3), dprintf (3), scan{3), setlocalg3), wcrtomb(3), wprintf (3), localg5)

SP-Klausur Manual-Auszug 2017-08-01 1

stat(2) stat(2) stat(2) stat(2)

NAME Not all of the Linux file systems implement all of the time fields. Some file system typ&svallmnting in
stat, fstat, Istat — get file status such a way that file accesses do not cause an updatesbfdtivee field. (See'noatime” inmount(8).)

SYNOPSIS
#include <sys'types.h>
#include <sys/stat.h>
#include <unistd.h>

The fieldst_atimeis changed by file accesses, for examplesdegve(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, fik@ap(2), may or may not updage atime.

The fieldst_mtime is changed by file modifications, for example,mblynod(2), truncate(2), utime(2) and
write(2) (of more than zero bytesMoreover, st_ntime of a directory is changed by the creation or dele-
tion of files in that directory The st_mtime field is not changed for changes irwaer, group, hard link
count, or mode.

int stat(const char * path, struct stat *buf);
int fstat(int fd, struct stat *buf);
int Istat(const char * path, struct stat *buf);

Feature Test Macro Requirements for glibc (eature test_macros(7)): The fieldst_ctime is changed by writing or by setting inode information (i.evner, group, link count,

mode, etc.).
Istat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500 The following POSIX macros are defined to check the file type usirg tiede field:
DESCRIPTION S ISREG(m) isit a regular file?
These functions return information about a file. _N(_) pe_rmissiqns are required on the f_ileu_tselfirbthe S ISDIR(m) directory?
case oftat() andlstat() — execute (search) permission is required on all of the directorigatirthat lead
to the file. S ISCHR(m) charactedevice?
stat() stats the file pointed to path and fills inbuf . S ISBLK(m) blockdevice?
S_ISFIFO(m) FIFO(named pipe)?
Istat() is identical tostat(), except that ipath is a symbolic link, then the link itself is stat-ed, not the file - .
: S ISLNK(m) symboliclink? (Not in POSIX.1-1996.)
that it refers to.
S 1SSOCK (m) soclet? (Not in POSIX.1-1996.)
fstat() is identical tostat(), except that the file to be stat-ed is specified by the file desddptor RETURN VAL UE
All of these system calls returrstt structure, which contains the following fields: On success, zero is returned. On errdris returned, andrrno is set appropriately.
struct stat { ERRORS

dev_t st_dev; /%D of device containing file */ EACCES

ino_t st_ino; /*inode number */ Search permission is denied for one of the directories in the path prefiathof (See also

mode_t st_mode; /protection */ path_resolution(7).)

n!lnk_t st_n_llnk; /*number of hard links */ EBADF

uid_t st_uid; /*user ID of owner */ fdis bad

gid_t st_gid; /*group ID of owner */ '

dev_t st _rde; /* device ID (if special file) */ EFAULT

off t st_size; /*total size, in bytes */ Bad address.

blksize_t st_blksize; /* blocksize for file system 1/O */ ELOOP

blkent_t st_blocks; /mumber of blocks allocated */ Too mary symbolic links encountered while trersing the path.

time_t st _atime;/* time of last access */

ENAMETOOLONG

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last status change */ File name too long.

h ENOENT
Thest_dev field describes the device on which this file resides. A component of the patpath does not exist, or the path is an empty string.
ENOMEM
Thest_rdev field describes the device that this file (inode) represents. Out of memory (i.e., kernel memory).
ENOTDIR

The st_size field gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a

o A) h L A component of the path is not a directory.
symlink is the length of the pathname it contains, without a trailing null byte. P P y

SEE ALSO
The st_blocks field indicates the number of blocks allocated to the file, 512-byte ufiitis may be access(2), chmod(2), chown(2), fstatat(2), readlink(2), utime(2), capabilities(7), symlink(7)
smaller tharst_size/512 when the file has holes.)

Thest_blksize field gives the "preferred” blocksize for fedient file system 1/0. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2017-08-01 1 SP-Klausur Manual-Auszug 2017-08-01 2

stremp(3) stremp(3)

NAME
strcmp, strncmp - compare dvetrings

SYNOPSIS
#include <string.h>

int strcmp(const char *sl, const char *s2);

int strncmp(const char *s1, const char *s2, size t n);
DESCRIPTION

The stremp() function compares the twdrings s1 ands2. It returns an integer less than, equal to, or

greater than zero #l is found, respeatély, to be kss than, to match, or be greater tian
Thestrnecmp() function is similarexcept it only compares the first (at masgharacters ofl ands2.

RETURN VALUE
Thestremp() andstrnecmp() functions return an inger less than, equal to, or greater than zesb (br the
first n bytes thereof) is found, respeely, to be kss than, to match, or be greater tian

CONFORMING TO
SVr4, 4.3BSD, C89, C99.

SEE ALSO
bemp(3), mememp(3), strcasecmp(3), strcoll(3), strncasecmp(3), wesemp(3), wesnemp(3)

SP-Klausur Manual-Auszug 2017-08-01 1

strtok(3) strtok(3)

strtok, strtok_r — extract tokens from strings

SYNOPSIS

#include <string.h>
char *strtok(char *str, const char *delim);

char *strtok_r(char *str, const char *delim, char ** saveptr);

DESCRIPTION

Thestrtok() function breaks a string into a sequence of zero or more nonemptysto®rthe first call to
strtok() the string to be parsed should be specifiedrin In each subsequent call that should parse the
same stringstr must be NULL.

The delim agument specifies a set of bytes that delimit the tokens in the parsed string. The caller may
specify different strings idelimin successie alls that parse the same string.

Each call testrtok() returns a pointer to a null-terminated string containing the neahtoKhisstring does
not include the delimiting byte. If no more tokens are fostrdpk() returns NULL.

A sequence of calls tetrtok() that operate on the same string maintains a pointer that determines the point
from which to start searching for the nexteaak Thefirst call tostrtok() sets this pointer to point to the

first byte of the stringThe start of the next token is determined by scanning forward for the next nondelim-
iter byte instr. If such a byte is found, it is taken as the start of the neentokf no such byte is found,

then there are no more tokens, aok() returns NULL. (A string that is empty or that contains only
delimiters will thus causstrtok() to return NULL on the first call.)

The end of each token is found by scanning forward until either the next delimiter byte is found or until the
terminating null byte (\0') is encountered. If a delimiter byte is found, Nesaoitten with a null byte to
terminate the current token, asaltok() saves a winter to the folling byte; that pointer will be used as

the starting point when searching for the nexetokInthis casestrtok() returns a pointer to the start of

the found token.

From the abee description, it follows that a sequence ofotwr more contiguous delimiter bytes in the
parsed string is considered to be a single delipatet that delimiter bytes at the start or end of the string
are ignored. Put another way: the éok returned bytrtok() are alvays nonempty strings. Thus, for
example, gven the string &aa;;bbb,", successie alls to strtok() that specify the delimiter string,”
would return the stringsaaa” and "bbb", and then a null pointer.

Thestrtok_r() function is a reentrantevsionstrtok(). Thesaveptr algument is a pointer to @ar * vari-

able that is used internally Isyrtok_r() in order to maintain comtébetween succes& alls that parse the
same string. On the first call sbrtok_r(), str should point to the string to be parsed, and the value of
saveptr is ignored. In subsequent cal; should be NULL, andaveptr should be unchanged since the
previous call.

Different strings may be parsed concurrently using sequences of csilisoto r() that specify dferent
saveptr arguments.

RETURN VALUE

strtok() andstrtok_r() return a pointer to the next token, or NULL if there are no more tokens.

ATTRIBUTES
Multithreading (see pthreads(7))

Thestrtok() function is not thread-safe, teetok_r() function is thread-safe.

SP-Klausur Manual-Auszug 2017-08-01 1

strtol(3) strtol(3) strtol(3) strtol(3)

NAME EXAMPLE

strtol, — cowert a string to a long integer The program shown belodemonstrates the use siftol(). Thefirst command-line gument specifies a
SYNOPSIS string from whichstrtol() should parse a number.

#include <stdlib.h> Program source

long int strtol(const char *nptr, char **endptr, int base);

DESCRIPTION

The strtol() function cowerts the initial part of the string inptr to a long integer value according to the
given base, which must be between 2 and 36 inchesor be he special value 0.

The string may begin with an arbitrary amount of white space (as determingsspdmne(3)) followed by a
single optional '+' or '-' signlf base is zero or 16, the string may then include a "0x" or "0X" prefix, and
the number will be read in base 16; otherwise, a kaseis taken as 10 (decimal) unless the next character
is '0', in which case it is taken as 8 (octal).

The remainder of the string is aanted to aong int value in the obvious mannetopping at the first char
acter which is not a valid digit in thevgh base. (Inbases abee 10, the letter ‘A’ in either uppercase or
lowercase represents 10, 'B' represents 11, and so forth, with 'Z' representing 35.)

If endptr is not NULL, strtol() stores the address of the firstdiid character infendptr. If there were no
digits at all,strtol() stores the original value aptr in *endptr (and returns 0). In particulaf *nptr is not
"\0' but**endptr is "\O' on return, the entire string is valid.

RETURN VALUE

Thestrtol() function returns the result of the eersion, unless the value would undewflor overflow. If
an underflav occurs,strtol() returnsLONG_MIN. If an overflow occurs,strtol() returnsLONG_MAX.
In both casesrrno is set toERANGE.

ERRORS

NOTES

EINVAL

(not in C99) The gien base contains an unsupported value.
ERANGE

The resulting value was out of range.

The implementation may also s®tno to EINVAL in case no carersion was performed (no digits seen,
and O returned).

Sincestrtol() can legitimately return @, ONG_MAX, or LONG_MIN on both success and failure, the
calling program should setrno to 0 before the call, and then determine if an error occurred by checking
whethererrno has a nonzero value after the call.

SP-Klausur Manual-Auszug 2017-08-01 1

#include <stdlib.h>
#include <limits.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])

if (argc < 2) {
fprintf(stdert "Usage: %s str\n", argv[0]);
exit(EXIT_FAILURE);

}

errno = 0; /* D distinguish success/failure after call */
char *endptr;
long val = strtol(argv[1], &endptd0);

/* Check for various possible errors */
if ((errno == ERANGE && (val == LONG_MAX || val == LONG_MIN))
|| (errno =0 && val == 0)) {
perror("strtol");
exit(EXIT_FAILURE);
}

if (*endptr I="0")
printf("Further characters after number: %s\n", endptr);

printf("strtol() returned %ld\n", val);

SP-Klausur Manual-Auszug 2017-08-01

TIME(2)

NAME

TIME(2)

time - get time in seconds

SYNOPSIS

#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION

time() returns the time as the number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

If tloc is non-NULL, the return value is also stored in the memory pointed lody

RETURN VALUE

On success, the value of time in seconds since the Epoch is ret@negtror ((time_t) —1)is returned,
anderrnois set appropriately.

ERRORS
EFAULT
tloc points outside your accessible address space (but see BUGS).
On systems where the C libraiyne() wrapper function imokes an mplementation provided by
the vdso(7) (so that there is no trap into the kernel), aralid address may instead trigger a
SIGSEGV signal.
NOTES

BUGS

SP-Klausur Manual-Auszug

POSIX.1 defineseconds since the Egoaising a formula that approximates the number of seconds
between a specified time and the Epoch. This formula takes account etcthehat all years that are

evenly divisible by 4 are leap years, but years that aealg divisible by 100 are not leap years unlesy the

are also eenly divisible by 400, in which case there leap years. This value is not the same as the actual
number of seconds between the time and the Epoch, because of leap seconds and because system clocks are
not required to be synchronized to a standard refereéRuoe.intention is that the interpretation of seconds

since the Epoch values be consistent; see POSIX.1-2008 Rationale A.4.15 for further rationale.

On Linux, a call tatime() with tloc specified as NULL cannot fail with the erl@OVERFL OW, even on

ABIs wheretime_tis a signed 32-bit integer and the clock ticks past the time 2**31 (2038-01-19 03:14:08
UTC, ignoring leap seconds). (POSIX.1 permits, but does not requieOMERFL OW error in the case
where the seconds since the Epoch will not fitrire_t) Insteadthe behaior on Linux is undefined when

the system time is out of thime_trange. Applicationsntended to run after 2038 should use ABIs with
time_twider than 32 bits.

Error returns from this system call are indistinguishable from successful reports that the time se@ fe
ondsbeforethe Epoch, so the C library wrapper functionenesetserrnoas a result of this call.

Thetloc agument is obsolescent and shouldagis be NULL in nev code. Whertloc is NULL, the call
cannot fail.

2017-08-01 1

waitpid(2) waitpid(2)

NAME
waitpid — wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);
DESCRIPTION

waitpid() suspends the calling process until one of its children changes state; if a child process changed

state prior to the call tavaitpid(), return is immediatepid specifies a set of child processes for which sta-
tus is requested.
If pid is equal tapid_t)-1, satus is requested foryachild process.
If pid is greater tharfpid_t)0, it specifies the proced® of the child process for which status is
requested.
If pid is equal to(pid_t)0 status is requested foryachild process whose process grobps equal
to that of the calling process.
If pid is less thar(pid_t)-1, status is requested for yachild process whose process grdDpis
equal to the absolute valuewtl.

If waitpid() returns because the status of a child processiilglale, then that status may besleiated with
the macros defined hystat(5). If the calling process had specified a non-zero valgabfloc, the status
of the child process will be stored in the location pointed tstdtyloc.

The options agument is constructed from the bitwise inckesDR of zero or more of the folleing flags,
defined in the headewsys/wait.h>

WCONTINUED The status of ancontinued child process specified pi, whose status has not
been reported since it continued, is also reported to the calling process.
WNOHANG waitpid() will not suspend xecution of the calling process if status is not imme-
diately available for one of the child processes specifiegbiloly
WNOWAIT Keep the process whose status is returnedtan loc in a waitable state. The
process may be waited for again with identical results.
RETURN VALUES

If waitpid() returns because the status of a child processailsilale, this function returns a value equal to
the procestD of the child process for which status is reportddvaitpid() returns due to the deéry of a
signal to the calling processl is returned an@rrno is set toEINTR. If this function was ivoked with
WNOHANG set inoptions, it has at least one child process specifiegilyfor which status is notvailable,
and status is notvailable for ary process specified bgid, O is returned. Otherwise,~1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid() will fail if one or more of the following is true:

ECHILD The process or process group specifiegiblydoes not exist or is not a child of the call-
ing process or can wer be in he states specified loptions.
EINTR waitpid() was interrupted due to the receipt of a signal sent by the calling process.
EINVAL An invalid value was specified faptions.
SEE ALSO

exed?2), exit(2), fork (2), sigaction(2), wstat(5)

SP-Klausur Manual-Auszug 2017-08-01 1

