
exec(2) exec(2)

NAME
exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS
#include <unistd.h>

int execl(const char *path, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path,char *const arg0[] , . . . , const char *argn,
char * /*NULL*/ , char *const envp[]);

int execve (const char *path, char *const argv[] char *const envp[]);

int execlp (const char *file, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execvp (const char *file, char *const argv[]);

DESCRIPTION
Each of the functions in theexecfamily overlays a new process image on an old process. The new process
image is constructed from an ordinary, executable file. This file is either an executable object file, or a file
of data for an interpreter. There can be no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int argc, char ∗ argv[], char ∗ envp[]);

whereargc is the argument count,argv is an array of character pointers to the arguments themselves, and
envpis an array of character pointers to the environment strings. As indicated,argc is at least one, and the
first member of the array points to a string containing the name of the file.

The argumentsarg0, . . ., argn point to null-terminated character strings.These strings constitute the argu-
ment list available to the new process image.Conventionally at leastarg0 should be present.The arg0
argument points to a string that is the same aspath (or the last component ofpath). Thelist of argument
strings is terminated by a(char ∗)0 argument.

Theargv argument is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process image. By convention,argv must have at least one member, and
it should point to a string that is the same aspath (or its last component).Theargv argument is terminated
by a null pointer.

Thepath argument points to a path name that identifies the new process file.

Thefile argument points to the new process file.If file does not contain a slash character, the path prefix for
this file is obtained by a search of the directories passed in thePATH environment variable (seeenviron(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process
image (seesignal(3C)). Otherwise,the new process image inherits the signal dispositions of the calling
process.

RETURN VALUES
If a function in theexecfamily returns to the calling process, an error has occurred; the return value is−1
anderrno is set to indicate the error.

SP-Klausur Manual-Auszug 2017-08-01 1

malloc(3) malloc(3)

NAME
calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

DESCRIPTION
calloc() allocates memory for an array ofnmemb elements ofsize bytes each and returns a pointer to the
allocated memory. The memory is set to zero.

malloc() allocatessize bytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to byptr, which must have been returned by a previous call tomal-
loc(), calloc() or realloc(). Otherwise, or iffree(ptr) has already been called before, undefined behaviour
occurs. Ifptr is NULL, no operation is performed.

realloc() changes the size of the memory block pointed to byptr to size bytes. Thecontents will be
unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized.If ptr
is NULL, the call is equivalent tomalloc(size); if size is equal to zero, the call is equivalent to free(ptr).
Unlessptr is NULL, it must have been returned by an earlier call tomalloc(), calloc() or realloc().

RETURN VALUE
For calloc() andmalloc(), the value returned is a pointer to the allocated memory, which is suitably aligned
for any kind of variable, orNULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable
and may be different fromptr, or NULL if the request fails. Ifsize was equal to 0, either NULL or a
pointer suitable to be passed tofree() is returned.If realloc() fails the original block is left untouched - it is
not freed or moved.

CONFORMING TO
ANSI-C

SEE ALSO
brk(2), posix_memalign(3)

SP-Klausur Manual-Auszug 2017-08-01 1

memset(3) memset(3)

NAME
memset − fill memory with a constant byte

SYNOPSIS
#include <string.h>

void *memset(void *s, int c, size_t n);

DESCRIPTION
Thememset() function fills the firstn bytes of the memory area pointed to bys with the constant bytec.

RETURN VALUE
Thememset() function returns a pointer to the memory areas.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, C89, C99, SVr4, 4.3BSD.

SEE ALSO
bstring(3), bzero(3), swab(3), wmemset(3)

SP-Klausur Manual-Auszug 2017-08-01 1

printf(3) printf(3)

NAME
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf − formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);
int fprintf(FILE * stream, const char * format, ...);
int sprintf(char * str, const char * format, ...);
int snprintf(char * str, size_t size, const char * format, ...);
...

DESCRIPTION
The functions in theprintf () family produce output according to aformatas described below. The function
printf () writes output tostdout, the standard output stream;fprintf () writes output to the given output
stream; sprintf () andsnprintf (), write to the character stringstr.

The functionsnprintf () writes at mostsizebytes (including the trailing null byte ('\0')) tostr.

These functions write the output under the control of aformat string that specifies how subsequent argu-
ments (or arguments accessed via the variable-length argument facilities ofstdarg(3)) are converted for
output.

Return value
Upon successful return, these functions return the number of characters printed (not including the trailing
'\0' used to end output to strings).

The functionssnprintf () andvsnprintf () do not write more thansizebytes (including the trailing '\0').If
the output was truncated due to this limit then the return value is the number of characters (not including
the trailing '\0') which would have been written to the final string if enough space had been available. Thus,
a return value ofsizeor more means that the output was truncated.

If an output error is encountered, a negative value is returned.

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if any. The format
string is composed of zero or more directives: ordinary characters (not%), which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments. Eachconversion specification is introduced by the character% , and ends with aconversion
specifier. In between there may be (in this order) zero or moreflags, an optional minimumfield width, an
optionalprecisionand an optionallength modifier.

The conversion specifier
A character that specifies the type of conversion to be applied. An example for a conversion specifier is:

o, u, x, X
The unsigned intargument is converted to unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal (x andX) notation.

s The const char *argument is expected to be a pointer to an array of character type (pointer to a
string). Charactersfrom the array are written up to (but not including) a terminating null byte
('\0'); if a precision is specified, no more than the number specified are written. If a precision is
given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array, the array must contain a terminating null byte.

SEE ALSO
printf (1), asprintf (3), dprintf (3), scanf(3), setlocale(3), wcrtomb(3), wprintf (3), locale(5)

SP-Klausur Manual-Auszug 2017-08-01 1

stat(2) stat(2)

NAME
stat, fstat, lstat − get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char * path, struct stat *buf);
int fstat(int fd , struct stat *buf);
int lstat(const char *path, struct stat *buf);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

lstat(): _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return information about a file. No permissions are required on the file itself, but — in the
case ofstat() andlstat() — execute (search) permission is required on all of the directories inpath that lead
to the file.

stat() stats the file pointed to bypath and fills inbuf .

lstat() is identical tostat(), except that ifpath is a symbolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptorfd.

All of these system calls return astat structure, which contains the following fields:

struct stat {
dev_t st_dev; /*ID of device containing file */
ino_t st_ino; /*inode number */
mode_t st_mode; /*protection */
nlink_t st_nlink; /*number of hard links */
uid_t st_uid; /*user ID of owner */
gid_t st_gid; /*group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for file system I/O */
blkcnt_t st_blocks; /*number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

Thest_dev field describes the device on which this file resides.

Thest_rdev field describes the device that this file (inode) represents.

The st_size field gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a
symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocks field indicates the number of blocks allocated to the file, 512-byte units.(This may be
smaller thanst_size/512 when the file has holes.)

Thest_blksize field gives the "preferred" blocksize for efficient file system I/O. (Writing to a file in smaller
chunks may cause an inefficient read-modify-rewrite.)

SP-Klausur Manual-Auszug 2017-08-01 1

stat(2) stat(2)

Not all of the Linux file systems implement all of the time fields. Some file system types allow mounting in
such a way that file accesses do not cause an update of thest_atime field. (See"noatime" inmount(8).)

The fieldst_atime is changed by file accesses, for example, byexecve(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, likemmap(2), may or may not updatest_atime.

The fieldst_mtime is changed by file modifications, for example, bymknod(2), truncate(2), utime(2) and
write(2) (of more than zero bytes).Moreover, st_mtime of a directory is changed by the creation or dele-
tion of files in that directory. The st_mtime field is not changed for changes in owner, group, hard link
count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

The following POSIX macros are defined to check the file type using thest_mode field:

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) characterdevice?

S_ISBLK(m) blockdevice?

S_ISFIFO(m) FIFO(named pipe)?

S_ISLNK(m) symboliclink? (Not in POSIX.1-1996.)

S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix ofpath. (See also
path_resolution(7).)

EBADF
fd is bad.

EFAULT
Bad address.

ELOOP
Too many symbolic links encountered while traversing the path.

ENAMETOOLONG
File name too long.

ENOENT
A component of the pathpath does not exist, or the path is an empty string.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path is not a directory.

SEE ALSO
access(2), chmod(2), chown(2), fstatat(2), readlink(2), utime(2), capabilities(7), symlink(7)

SP-Klausur Manual-Auszug 2017-08-01 2

strcmp(3) strcmp(3)

NAME
strcmp, strncmp − compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
The strcmp() function compares the two strings s1 and s2. It returns an integer less than, equal to, or
greater than zero ifs1 is found, respectively, to be less than, to match, or be greater thans2.

Thestrncmp() function is similar, except it only compares the first (at most)n characters ofs1 ands2.

RETURN VALUE
Thestrcmp() andstrncmp() functions return an integer less than, equal to, or greater than zero ifs1 (or the
first n bytes thereof) is found, respectively, to be less than, to match, or be greater thans2.

CONFORMING TO
SVr4, 4.3BSD, C89, C99.

SEE ALSO
bcmp(3), memcmp(3), strcasecmp(3), strcoll(3), strncasecmp(3), wcscmp(3), wcsncmp(3)

SP-Klausur Manual-Auszug 2017-08-01 1

strtok(3) strtok(3)

NAME
strtok, strtok_r − extract tokens from strings

SYNOPSIS
#include <string.h>

char *strtok(char *str, const char *delim);

char *strtok_r(char *str, const char *delim, char **saveptr);

DESCRIPTION
Thestrtok() function breaks a string into a sequence of zero or more nonempty tokens. Onthe first call to
strtok() the string to be parsed should be specified instr. In each subsequent call that should parse the
same string,str must be NULL.

The delim argument specifies a set of bytes that delimit the tokens in the parsed string. The caller may
specify different strings indelim in successive calls that parse the same string.

Each call tostrtok() returns a pointer to a null-terminated string containing the next token. Thisstring does
not include the delimiting byte. If no more tokens are found,strtok() returns NULL.

A sequence of calls tostrtok() that operate on the same string maintains a pointer that determines the point
from which to start searching for the next token. Thefirst call tostrtok() sets this pointer to point to the
first byte of the string.The start of the next token is determined by scanning forward for the next nondelim-
iter byte instr. If such a byte is found, it is taken as the start of the next token. If no such byte is found,
then there are no more tokens, andstrtok() returns NULL. (A string that is empty or that contains only
delimiters will thus causestrtok() to return NULL on the first call.)

The end of each token is found by scanning forward until either the next delimiter byte is found or until the
terminating null byte ('\0') is encountered. If a delimiter byte is found, it is overwritten with a null byte to
terminate the current token, andstrtok() saves a pointer to the following byte; that pointer will be used as
the starting point when searching for the next token. Inthis case,strtok() returns a pointer to the start of
the found token.

From the above description, it follows that a sequence of two or more contiguous delimiter bytes in the
parsed string is considered to be a single delimiter, and that delimiter bytes at the start or end of the string
are ignored. Put another way: the tokens returned bystrtok() are always nonempty strings. Thus, for
example, given the string "aaa;;bbb,", successive calls to strtok() that specify the delimiter string ";,"
would return the strings "aaa" and "bbb", and then a null pointer.

The strtok_r() function is a reentrant versionstrtok(). Thesaveptr argument is a pointer to achar * vari-
able that is used internally bystrtok_r() in order to maintain context between successive calls that parse the
same string. On the first call tostrtok_r(), str should point to the string to be parsed, and the value of
saveptr is ignored. In subsequent calls,str should be NULL, andsaveptr should be unchanged since the
previous call.

Different strings may be parsed concurrently using sequences of calls tostrtok_r() that specify different
saveptr arguments.

RETURN VALUE
strtok() andstrtok_r() return a pointer to the next token, or NULL if there are no more tokens.

ATTRIBUTES
Multithreading (see pthreads(7))

Thestrtok() function is not thread-safe, thestrtok_r() function is thread-safe.

SP-Klausur Manual-Auszug 2017-08-01 1

strtol(3) strtol(3)

NAME
strtol, − convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

DESCRIPTION
The strtol() function converts the initial part of the string innptr to a long integer value according to the
given base, which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined byisspace(3)) followed by a
single optional '+' or '−' sign.If base is zero or 16, the string may then include a "0x" or "0X" prefix, and
the number will be read in base 16; otherwise, a zerobase is taken as 10 (decimal) unless the next character
is '0', in which case it is taken as 8 (octal).

The remainder of the string is converted to along int value in the obvious manner, stopping at the first char-
acter which is not a valid digit in the given base. (Inbases above 10, the letter 'A' in either uppercase or
lowercase represents 10, 'B' represents 11, and so forth, with 'Z' representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in*endptr. If there were no
digits at all,strtol() stores the original value ofnptr in *endptr (and returns 0). In particular, if *nptr is not
'\0' but**endptr is '\0' on return, the entire string is valid.

RETURN VALUE
The strtol() function returns the result of the conversion, unless the value would underflow or overflow. If
an underflow occurs,strtol() returnsLONG_MIN. If an overflow occurs,strtol() returnsLONG_MAX.
In both cases,errno is set toERANGE.

ERRORS
EINVAL

(not in C99) The given base contains an unsupported value.

ERANGE
The resulting value was out of range.

The implementation may also seterrno to EINVAL in case no conversion was performed (no digits seen,
and 0 returned).

NOTES
Sincestrtol() can legitimately return 0,LONG_MAX, or LONG_MIN on both success and failure, the
calling program should seterrno to 0 before the call, and then determine if an error occurred by checking
whethererrno has a nonzero value after the call.

SP-Klausur Manual-Auszug 2017-08-01 1

strtol(3) strtol(3)

EXAMPLE
The program shown below demonstrates the use ofstrtol(). Thefirst command-line argument specifies a
string from whichstrtol() should parse a number.

Program source

#include <stdlib.h>
#include <limits.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{

if (argc < 2) {
fprintf(stderr, "Usage: %s str\n", argv[0]);
exit(EXIT_FAILURE);

}

errno = 0; /* To distinguish success/failure after call */
char *endptr;
long val = strtol(argv[1], &endptr, 10);

/* Check for various possible errors */
if ((errno == ERANGE && (val == LONG_MAX || val == LONG_MIN))

|| (errno != 0 && val == 0)) {
perror("strtol");
exit(EXIT_FAILURE);

}

if (*endptr != '\0')
printf("Further characters after number: %s\n", endptr);

printf("strtol() returned %ld\n", val);
}

SP-Klausur Manual-Auszug 2017-08-01 2

TIME(2) TIME(2)

NAME
time − get time in seconds

SYNOPSIS
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION
time() returns the time as the number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

If tloc is non-NULL, the return value is also stored in the memory pointed to bytloc.

RETURN VALUE
On success, the value of time in seconds since the Epoch is returned.On error, ((time_t) −1) is returned,
anderrno is set appropriately.

ERRORS
EFAULT

tloc points outside your accessible address space (but see BUGS).

On systems where the C librarytime() wrapper function invokes an implementation provided by
the vdso(7) (so that there is no trap into the kernel), an invalid address may instead trigger a
SIGSEGV signal.

NOTES
POSIX.1 definesseconds since the Epoch using a formula that approximates the number of seconds
between a specified time and the Epoch. This formula takes account of the facts that all years that are
ev enly divisible by 4 are leap years, but years that are evenly divisible by 100 are not leap years unless they
are also evenly divisible by 400, in which case they are leap years. This value is not the same as the actual
number of seconds between the time and the Epoch, because of leap seconds and because system clocks are
not required to be synchronized to a standard reference.The intention is that the interpretation of seconds
since the Epoch values be consistent; see POSIX.1-2008 Rationale A.4.15 for further rationale.

On Linux, a call totime() with tloc specified as NULL cannot fail with the errorEOVERFLOW, even on
ABIs wheretime_tis a signed 32-bit integer and the clock ticks past the time 2**31 (2038-01-19 03:14:08
UTC, ignoring leap seconds). (POSIX.1 permits, but does not require, theEOVERFLOW error in the case
where the seconds since the Epoch will not fit intime_t.) Instead,the behavior on Linux is undefined when
the system time is out of thetime_trange. Applicationsintended to run after 2038 should use ABIs with
time_twider than 32 bits.

BUGS
Error returns from this system call are indistinguishable from successful reports that the time is a few sec-
ondsbeforethe Epoch, so the C library wrapper function never setserrnoas a result of this call.

The tloc argument is obsolescent and should always be NULL in new code. Whentloc is NULL, the call
cannot fail.

SP-Klausur Manual-Auszug 2017-08-01 1

waitpid(2) waitpid(2)

NAME
waitpid − wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int * stat_loc, int options);

DESCRIPTION
waitpid() suspends the calling process until one of its children changes state; if a child process changed
state prior to the call towaitpid(), return is immediate.pid specifies a set of child processes for which sta-
tus is requested.

If pid is equal to(pid_t)−1, status is requested for any child process.

If pid is greater than(pid_t)0, it specifies the processID of the child process for which status is
requested.

If pid is equal to(pid_t)0 status is requested for any child process whose process groupID is equal
to that of the calling process.

If pid is less than(pid_t)−1, status is requested for any child process whose process groupID is
equal to the absolute value ofpid.

If waitpid() returns because the status of a child process is available, then that status may be evaluated with
the macros defined bywstat(5). If the calling process had specified a non-zero value ofstat_loc, the status
of the child process will be stored in the location pointed to bystat_loc.

The options argument is constructed from the bitwise inclusive OR of zero or more of the following flags,
defined in the header<sys/wait.h>:

WCONTINUED The status of any continued child process specified bypid, whose status has not
been reported since it continued, is also reported to the calling process.

WNOHANG waitpid() will not suspend execution of the calling process if status is not imme-
diately available for one of the child processes specified bypid.

WNOWAIT Keep the process whose status is returned instat_loc in a waitable state. The
process may be waited for again with identical results.

RETURN VALUES
If waitpid() returns because the status of a child process is available, this function returns a value equal to
the processID of the child process for which status is reported.If waitpid() returns due to the delivery of a
signal to the calling process,−1 is returned anderrno is set toEINTR . If this function was invoked with
WNOHANG set inoptions, it has at least one child process specified bypid for which status is not available,
and status is not available for any process specified bypid, 0 is returned.Otherwise,−1 is returned, and
errno is set to indicate the error.

ERRORS
waitpid() will fail if one or more of the following is true:

ECHILD The process or process group specified bypid does not exist or is not a child of the call-
ing process or can never be in the states specified byoptions.

EINTR waitpid() was interrupted due to the receipt of a signal sent by the calling process.

EINVAL An invalid value was specified foroptions.

SEE ALSO
exec(2), exit(2), fork (2), sigaction(2), wstat(5)

SP-Klausur Manual-Auszug 2017-08-01 1

