
SLP-assignment #5: traffic light

(15 points, groups of two)

Implement a traffic-light system controller with a pedestrian passing in the file ampel.c. Normally, the
lights for the cars should be green and red for the pedestrians. If a pedestrian wants to cross the street,
they can request a switch by pressing a button. After the request, the traffic light for the cars is set to
red step by step while the pedestrian lights switch to green. The pedestrian has some time to cross the
street before the controller switches back to its normal mode of operation.

This assignment can be divided into two parts: Part a) implements the basic traffic-light control and
part b) introduces an error state for the system. If the cause of the error is no longer present, the controller
should – without endangering pedestrians – switch back to its normal state. In the following, both parts
are described in detail.

Part a: Traffic Light Controller (11 points)

The traffic lights for the cars is represented by the LEDs RED0, YELLOW0 and GREEN0, the pedestrian lights
by RED1 and GREEN1 (there is no yellow for pedestrians). By pressing BUTTON0, a pedestrian can request
a switch of lights. The LED BLUE1 signals that a request has been accepted.

In detail, the controller should work as follows:

• A request is triggered by pressing BUTTON0. By switching on the LED BLUE1, the request is accepted
(“signal is coming soon”). This LED gets switched off as soon as the pedestrian light is set to green.
Further activations of BUTTON0 are ignored until the pedestrian light shows red again.

• After a successful request in the normal mode (cars: green, pedestrians: red), the traffic-light systems
counts down 8 seconds on the 7-segment display to indicate, how long the pedestrian has to wait;
in all other cases, the 7-segment display is switched off. For the first 5 seconds of the countdown,
there is no change of any lights, then the light for the cars changes to yellow for one second before
turning red. After two more seconds with both lights showing red, the lights for the pedestrians
changes to green.

• The pedestrian light should be green for exactly 5 seconds, then it should switch back to red.
After another second, the traffic lights for the cars show red-yellow and after yet another second it
switches to green, the normal mode.

• Initially, both lights should be set to red and the traffic light for the cars switches to red-yellow and
then to green in the same speed as above while the pedestrian light remains red (however, requests
can already be accepted).

• A request can be accepted as soon as the pedestrian light is set to red. This means that request can
be accepted even before the traffic light for the cars shows red-yellow (i.e., both lights are red) –
while the LED BLUE1 immediately signals the accepted request, the countdown will not start before
the traffic light for the cars shows green.

Make sure that the microcontroller enters a sleep mode whenever no calculations are required. This
can be done using functions from avr/sleep.h.

Always remember the correct usage of the volatile-keyword. For each declaration of a volatile
variable, add a comment explaining why the keyword is needed there.

Exercises for SLP (SS 2024) FAU Erlangen-Nürnberg
Department Informatik, Lehrstuhl für Informatik 4



Part b: Error State (4 points)

The traffic light should be extended to include an error state (light for the cars blinks yellow, pedestrian
light and 7-segment display are switched off). As an indicator for an error, the external interface EXT
should be used. Since it is wired to the same pin as BUTTON1, the button can be used to test the error
state.

• During low level (PD3 connected to GND), corresponding to BUTTON1 being pressed, the error state
is activate.

• The blinking period is one second. Between switching the indicator light on and off, the CPU has
to enter a sleep mode as always.

• The error state is ended as soon as a high level is present at the pin. To prevent any accidents,
the controller should initialize the traffic light with red for both lights and then switch to green as
explained before.

• The edge case, where the error state is present at the start of the traffic systems, can be ignored.

Hints:

• Use the modules led and 7seg of the libspicboard for all outputs.

• However, do not use the button and timer module of the libspicboard!

– Instead, you have to configure the interrupt handling and -handler for BUTTON0 and BUTTON1
directly. They are wired to pins PD2 (BUTTON0) and PD3 (BUTTON1) respectively and therefore
connected to the external interrupt sources INT0 and INT1 of the ATmega. However, consider
that the interrupt detection could be different for these two buttons.

– For the timing, you should use TIMER0. You may use the overflow interruption OVF (errors
up to 50ms can be tolerated). Choose the most resource efficient prescaler. When switching
from and to the error state, waiting phases of less then 1s are tolerated (the timer does not
have to be reset).

• Design your program in such way that main() implement only once the logic for entering a sleeping
state. In particular, do not call or implement the sleep state for each change of state individually.

• Always give a reason why you use the volatile keyword. If the same reasoning holds for multiple
variables, you can justify them together.

• In the directory /proj/i4spic/pub/aufgabe5/, you can find the file ampel.elf which contains a
reference implementation.

Deadline

T01 16.06.2024 18:00:00
T02 16.06.2024 18:00:00
T03 17.06.2024 18:00:00
T04 18.06.2024 18:00:00
T05 18.06.2024 18:00:00
T06 19.06.2024 18:00:00
T07 19.06.2024 18:00:00
T08 20.06.2024 18:00:00
T09 17.06.2024 18:00:00

Exercises for SLP (SS 2024) FAU Erlangen-Nürnberg
Department Informatik, Lehrstuhl für Informatik 4


