
Exercises in System Level Programming (SLP) –
Sommersemester 2024

Exercise 1

Maximilian Ott

Lehrstuhl für Informatik 4
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Verteilte Systeme
und Betriebssysteme

Organizational Matters

Tutorial

Concept of Tutorial:
1. Correct the last programming assignment
2. Deepen lecture materials
3. Introduction to the new programming assignments
4. Possibly development of a solution sketch
5. Hands-on: joined programming

Slides are not necessarily made to be studied on their own→ attendance required, write along
Overview for the term and SLP appointments:
https://sys.cs.fau.de/lehre/SS24/spic/

1

Assignments

Calendar week

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Lecture period

blink
snake

led module
game

traffic light
concat

p.-dir
mish

2

Solutions

Assignments are submitted via Linux
Automatic check for plagiarism

Comparison to all other solutions (including old ones)
Plagiarism yields 0 points⇒ If in doubt talk to your tutor

Deduction of points
-1 point for each compiler warning
-50% of possible points if the code does not compile

(Helpful) comments in the code can help you and your tutor

3

Bonus Points

Submitted assignments get graded with bonus points
If you reach 20% or more of all bonus points, there is a bonus
for the exam
For 80% or more you get rewarded with full bonus points for
the exam
Conversion of points from the assignments into bonus points
for the exam (up to 10% of points)
Ð→ Example: 80% of points from the assignments yield 9 bonus

points if the exam has 90 points total

However, you cannot pass the exam by the help of bonus points
Bonus points cannot be transferred to the next semester

4

Computer Exercise

Room for the Computer exercise: 01.153-113 (WinCIP)
Help from the tutor during your work with the assignment
„First come, first served“-principle
If after 30 minutes after the beginning of the Computer exercise
no student is present, the exercise is cancelled

5

CipMap

6

Make Requests via CipMap

1. Visit the site cipmap.cs.fau.de
2. Choose the room where the Computer exercise takes place
(e. g. 01.153-113)

3. Click on Lecture Mode.
colored PC: request sent
grey PC: no request

4. By clicking Request Tutor, a request will be queued
5. After your question is answered: click on the button again to
mark the request as finished

Please note:

You can only make requests during the time of Computer
exercises
When logging off, all open requests get deleted

7

If a problems occur

Consult the slides
Write an e-mail
Questions on lecture contents (tutors):
i4slp@i4.cs.fau.de
Organizational questions (all staff):
i4slp-orga@i4.cs.fau.de

8

Development Environment

Hardware: SPiCboard

ATmega328PB Xplained Mini:
Micro-controller board with integrated programmer/debugger
Custom-made extension PCB for SPiC/SLP

9

Simulator: SPiCsim

SPiCsim:
Simulates ATmega328PB and SPiCBoard
Makes recording and visualizing of signals possible

10

Handling the Assignments

Supervised programming for the assignments during Computer
exercises
⇒ Hardware is made available during the exercises
Independent working style (partially) required

Using own SPiCboard: can be soldered at the soldering night
SPiCboard Simulator: SPiCsim

11

Function Libraries

libspicboard: function library for addressing the hardware
Example: sb_led_on(GREEN0); switches on the first green
LED
Direct configuration of the hardware by the application
developer is not needed
Usage mainly for the first assignments, later the functions of
the libspicboard have to be implemented by yourself
Documentation online:
https://sys.cs.fau.de/lehre/SS24/spic/uebung/
spicboard/libapi

12

Important Directories

Public directory /proj/i4spic/<login>/pub/
Auxiliary material for each assignment can be found in
aufgabeX/
libspicboard with documentation and minimal working
examples
All lecture slides in lecture/
All exercise slides in exercise/
Assistance for dealing with the language C

Project directory
/proj/i4spic/<login>/
Solutions have to be saved in subdirectories aufgabeX
⇒ The program for submitting searches only there

Others cannot read this directory
Directory is created automatically
Contains symbolic links to the public directory

13

Important Directories

Public directory /proj/i4spic/<login>/pub/
Auxiliary material for each assignment can be found in
aufgabeX/
libspicboard with documentation and minimal working
examples
All lecture slides in lecture/
All exercise slides in exercise/
Assistance for dealing with the language C

Project directory
/proj/i4spic/<login>/
Solutions have to be saved in subdirectories aufgabeX
⇒ The program for submitting searches only there

Others cannot read this directory
Directory is created automatically
Contains symbolic links to the public directory

13

The Editor

14

The Editor

Can be found in the start menu in FAU Courses as SPiC-IDE
Designed in particular for SPiC, based on Atom
Combines editor, compiler and debugger into a signle
environment
Cross-compiler for creating programs for different architecture

Host system: Intel-PC
Target system: AVR-Mikrocontroller

14

Manuals

CIP-Login

To use the CIP infrastructure (and therefore the tools for
assignment submission) a login for the CIP is required

When running into problems, please contact the CIP Admins
Criteria for a secure password

At least 8 characters, 10 is better
At least 3 different types of characters, 4 are better (capitalized
letters, small letters, digits, special characters)
Do not use any dictionary words, names, login, etc.

15

Submitting Assignments (1)

At the latest after testing the program, you should submit your
solution for grading
When working with a partner, only ONE of you is allowed to
submit the assignment!

Your partner has to take part in the same Tutorial
When submitting, you can specify your partner

Submission in the SPiC IDE with the click of a button or
Open a terminal window and execute the following command
(aufgabeX has to be replaced):
/proj/i4spic/bin/submit aufgabeX

Important: green text indicates that the submission was
successful,
red text indicates an error!

16

Submitting Assignments (2)

Causes for an error
Necessary files are not present in the right directory
aufgabeX has to be written without capitalization
.c-file has been wrongly named
Deadline was missed

Useful tools
Show the source code of the submitted assignment:
/proj/i4spic/bin/show-submission aufgabeX
Differences between submitted version and current version in the
project directory /proj/i4spic/<login>:
/proj/i4spic/bin/show-submission aufgabeX -d
Show deadline:
/proj/i4spic/bin/get-deadline aufgabeX

17

Your Todos

1. Registration for the exercises via Waffel: https://waffel.cs.fau.de
For submission and correction of assignments⇒ from Thursday, 18.04.2024, 6:00 PM

2. Registration for the CIP: https://account.cip.cs.fau.de
For working on the assignments, submitting them and receiving
feedback

△! Since the registration for the CIP can take up to 24 hours
until you can log in with your new account, please make
sure to register asap. Without an account you cannot take
part in working on the assignments!

18

Your Todos

1. Registration for the exercises via Waffel: https://waffel.cs.fau.de
For submission and correction of assignments⇒ from Thursday, 18.04.2024, 6:00 PM

2. Registration for the CIP: https://account.cip.cs.fau.de
For working on the assignments, submitting them and receiving
feedback△! Since the registration for the CIP can take up to 24 hours

until you can log in with your new account, please make
sure to register asap. Without an account you cannot take
part in working on the assignments!

18

Compiler Optimizations

Compiler Optimizations: Background

AVR micro-controller, as well as nearly all CPUs cannot execute
operations directly on memory
Procedure of operations:
1. Load the operands from the memory into processor registers
2. Execute the operations using the registers
3. Store the result into memory
⇒ More detailed description in the lecture

The compiler is allowed to arbitrarily change the code as long
as the “global” state after exiting a function stays the same
Optimizations can lead to drastically faster code

19

Compiler Optimizations: Examples

Typical optimizations:
When entering a function the variable is loaded into a register
and only written back to memory when leaving the function
Redundant and “dead” code is removed
Some instructions get reordered
For automatic variables no memory is reserved; they are placed in
processor registers instead
If possible, the compiler does some calculations (constant
folding):
a = 3 + 5; is replaced a = 8;
The range of values of automatic variables gets adapted:
Instead of 0 to 10, one can count from 246 to 256 (= 0 for
uint8_t) and then check if an overflow occurred

20

Compiler Optimizations: Example (1)

01 void wait(void) {
02 uint8_t u8 = 0;
03 while(u8 < 16) {
04 u8++;
05 }
06 }

Incrementing the variable u8 up to a value of 16
Used for e. g. active waiting

21

Compiler Optimizations: Example (2)

Assembler without optimizations

01 ; void wait(void){
02 ; uint8_t u8;
03 ; [Prologue (store registers, initialize Y, etc.)]
04 rjmp while ; jump to while
05 ; u8++;
06 addone:
07 ldd r24, Y+1 ; load data from Y+1 into register 24
08 subi r24, 0xFF ; subtract 255 (add 1)
09 std Y+1, r24 ; write data from register 24 into Y+1
10 ; while(u8 < 16)
11 while:
12 ldd r24, Y+1 ; load data from Y+1 into register 24
13 cpi r24, 0x10 ; compare register 24 with 16
14 brcs addone ; if smaller, jump to addone
15 ;[Epilogue (restore registers)]
16 ret ; return from the function
17 ;}

22

Compiler Optimizations: Example (3)

Assembler with optimizations

01 ; void wait(void){
02 ret ; Return from the function
03 ; }

C does not know the semantics of a waiting loop
The loop does not have any effect on the (global) state

↝ The compiler optimises the loop by removing it

23

Compiler Optimizations: Example (3)

Assembler with optimizations

01 ; void wait(void){
02 ret ; Return from the function
03 ; }

C does not know the semantics of a waiting loop
The loop does not have any effect on the (global) state

↝ The compiler optimises the loop by removing it

23

Keyword volatile

Variables can be declared as volatile
↝ The compiler is not allowed to optimise the variable:

Memory has to be reserved for the variable
The life span cannot be shortened
Prior to each operation, the variable has to be loaded from
memory and afterwards it has to be written back to memory
The range of value of the variable cannot be adapted

Possible uses of volatile:
Active waiting loops: prevents optimization of the loop
Concurrent execution (later in the lecture)

Variable is used in the interrupt handler and in the main loop
Changes of the variable have to be “made observable”

Access to hardware (e. g. pins) ↝ important for the LED module
(Debugging: the value cannot be removed due to optimizations)

24

Task: blink

Task Description: blink

Learning objective:
Make first experiences with the programming environment and
the submission system
Active waiting

Flashing LEDs YELLOW0 and YELLOW1
Switching on and off alternately (warning light)
Frequency of approx. 2 times per second
Use of the library functions for addressing the LEDs
Implementation by active waiting (loop with counter)

Documentation of the library:
https://sys.cs.fau.de/lehre/SS24/spic/uebung/spicboard/libapi

File to be submitted: blink.c

25

Hands-on: Light
Screencast: https://www.video.uni-erlangen.de/clip/id/13444

Hands-on: Light

Inside the SPiC-IDE:
Create new folder (e. g. hands-on/licht)
Create new source file (e. g. licht.c)

Create the program:
Switch on one LED (e. g. GREEN0)
Wait inside an endless loop

Inside the SPiC-IDE:
Compile the program
Test and execute the program in the simulator or on an actual
SPiCboard

27

