
Exercises in System Level Programming (SLP) –
Sommersemester 2024

Exercise 2

Maximilian Ott

Lehrstuhl für Informatik 4
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Verteilte Systeme 
und Betriebssysteme



Variables



Usage von int

The size of the int type is not defined exactly
For example on ATMEGA328PB: 16 bit
⇒ Especially in the context of µC, this can yield slower code and/or

be a potential source for errors
For working on the assignments, we decided

Usage of int counts as an error
Instead: Use types defined in stdint.h: int8_t, uint8_t,
int16_t, uint16_t, etc.

Range of value
limits.h: INT8_MAX, INT8_MIN, ...

Memory is limited and therefore expensive on µC
(SPICBOARD/ATMEGA328PB only has 2048 byte SRAM)

↝ Only use as little memory as necessary!

1



Typedefs & Enums

01 #define PB3 3
02
03 typedef enum {
04 BUTTON0 = 0, BUTTON1 = 1
05 } BUTTON;
06
07 typedef enum {
08 PRESSED = 0, RELEASED = 1, UNKNOWN = 2
09 } BUTTONSTATE;
10
11 void main(void) {
12 /* ... */
13 PORTB |= (1 << PB3); // not (1 << 3)
14
15 // Declaration: BUTTONSTATE sb_button_getState(BUTTON btn);
16 BUTTONSTATE state = sb_button_getState(BUTTON0); // not

↪ sb_button_getState(0)
17 /* ... */
18 }

Use predefined types
Only use explicit integer values if necessary 3



Bits & Bytes



Number Systems

Numbers can be represented using different bases
⇒ Usually: decimal (10), hexadecimal (16), octal (8) and binary (2)
Nomenclature:

Bits: Digits of binary numbers
Nibbles: Groups of 4 bits
Bytes: Groups of 8 bits

4



Bit Operations

Bit operations: Bitwise logical expressions
Possible operations:

~
0 1
1 0

& 0 1
0 0 0
1 0 1

| 0 1
0 0 1
1 1 1

^ 0 1
0 0 1
1 1 0

not and or exclusive
or

Example:

~ 10012
01102

11002
& 10012
10002

11002
| 10012
11012

11002
^ 10012
01012

5



Bit Operations

Bit operations: Bitwise logical expressions
Possible operations:

~
0 1
1 0

& 0 1
0 0 0
1 0 1

| 0 1
0 0 1
1 1 1

^ 0 1
0 0 1
1 1 0

not and or exclusive
or

Example:

~ 10012
01102

11002
& 10012
10002

11002
| 10012
11012

11002
^ 10012
01012

5



Shift Operations

Example:

uint8_t x = 0x9d; 1 0 0 1 1 1 0 1
x = x << 2; 0 1 1 1 0 1 0 0
x = x >> 2; 0 0 0 1 1 1 0 1

Setting single bits:

(1 << 0) 0 0 0 0 0 0 0 1
(1 << 3) 0 0 0 0 1 0 0 0
(1 << 3) | (1 << 0) 0 0 0 0 1 0 0 1

Caution:
When shifting signed variables, the behaviour of the
>>-operator is not well defined in every case.

6



assignment: snake



assignment: snake

Snake consisting of adjecent LEDs
Length (1 to 5 LEDs) is configured with the potentiometer (POTI)
Speed depends on the environment brightness (PHOTO)
↝ The brighter the environment is, the faster the snake should move

Mode of the snake can be toggled with a button (BUTTON0)
Normal: Switched on LEDs represent the snake
Inverted: Switched off LEDs represent the snake

⇒ You should work on the assignment in teams of two:
The submit scripts asks for your partner

7



General Remarks

Variables in functions behave similar to Java/Python
↝ To solve the assignment, only local variables are necessary

The C compiler reads files from top to bottom
↝ Functions have to be declared in the right order:

1. wait()
2. drawsnake()
3. main()

⇒ Details on compiler internals are discussed in the lecture.

8



Description of the Snake

Position of its head
Number associated with a LED
Range of value {0,1, . . . ,7}

Length of the snake
Integer in range of {1,2, . . . ,5}

Mode of the snake
Normal or inverted
Can be represented as 0 and 1

Speed of the snake
Here: Number of iterations of an active waiting loop

9



Divide-and-conquer

Basic program flow: Which steps do always repeat?
Prevent duplicate code:
↝ Reoccurring problems can be addressed by helper functions

External visibility: Scope should be as restricted as possible
Is the state only relevant for one function?
↝ Local variable

Are more than one function accessing the same state?
↝ Global/module local variable

10



Basic Rundown snake

Basic program flow: Represent snake, move snake, ...
Pseudo code:

01 void main(void) {
02 while(1) {
03 // calculate length
04 length = ...
05
06 // draw snake
07 drawSnake(head, length, mode);
08
09 // put head to next position
10 ...
11
12 // wait and determine mode
13 ...
14
15 } // end of main loop
16 }

11



Representation of the Snake

Parameters of representation
Position of the head
Length
Mode

Function signature:
void drawSnake(uint8_t head, uint8_t length,
↪ uint8_t modus)
Representation depends on following Parameters:

Normal mode (glowing snake):
Switch on all LEDs that belong to the snake
Switch off all remaining LEDs

Inverted mode (dark snake):
Switch off the LEDs belonging to the snake
Switch on all remaining LEDs

12



The Modulo Operator

Moving the snake
Modify the position of the head independent of the direction of
movement
Problem: What happens at the end of the LED band?

A solution: The modulo operator %
Remainder of a integer division
Attention: In C the result is negative for negative divisors
Example: b = a % 4;

a -5 -4 -3 -2 -1 0 1 2 3 4 5 6
b -1 0 -3 -2 -1 0 1 2 3 0 1 2

13



Edge Detection without Interrupts

Active waiting between movements of the snake
Detect whether the button has been pressed
Detect an edge by cyclic polling the level
Differentiate between active-high & active-low
Later: Implementation using interrupts

14



Hands-on: Signal Lamp
Screencast: https://www.video.uni-erlangen.de/clip/id/14038

https://www.video.uni-erlangen.de/clip/id/14038


Hands-on: Signal Lamp

Send Morse signals via RED0
Controllable with BUTTON1
Usage of library functions for button and LED
Documentation of the library inside the SPiC IDE or via
https://sys.cs.fau.de/lehre/SS24/spic/uebung/spicboard/libapi

Insert comments in the source code

16

https://sys.cs.fau.de/lehre/SS24/spic/uebung/spicboard/libapi

	Variables 
	Usage of int 
	Typedefs & Enums 

	Bits & Bytes 
	Bit Operations 
	Shift Operations 

	assignment: snake 
	General Remarks 
	Description of the Snake 
	Division into Subproblems 

	Hands-on: Signal Lamp 

