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Variables



Usage von int

The size of the int type is not defined exactly
For example on ATMEGA328PB: 16 bit
⇒ Especially in the context of µC, this can yield slower code and/or

be a potential source for errors
For working on the assignments, we decided

Usage of int counts as an error
Instead: Use types defined in stdint.h: int8_t, uint8_t,
int16_t, uint16_t, etc.

Range of value
limits.h: INT8_MAX, INT8_MIN, ...

Memory is limited and therefore expensive on µC
(SPICBOARD/ATMEGA328PB only has 2048 byte SRAM)

↝ Only use as little memory as necessary!
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Typedefs & Enums

01 #define PB3 3
02
03 typedef enum {
04 BUTTON0 = 0, BUTTON1 = 1
05 } BUTTON;
06
07 typedef enum {
08 PRESSED = 0, RELEASED = 1, UNKNOWN = 2
09 } BUTTONSTATE;
10
11 void main(void) {
12 /* ... */
13 PORTB |= (1 << PB3); // not (1 << 3)
14
15 // Declaration: BUTTONSTATE sb_button_getState(BUTTON btn);
16 BUTTONSTATE state = sb_button_getState(BUTTON0); // not

↪ sb_button_getState(0)
17 /* ... */
18 }

Use predefined types
Only use explicit integer values if necessary 3



Bits & Bytes



Number Systems

Numbers can be represented using different bases
⇒ Usually: decimal (10), hexadecimal (16), octal (8) and binary (2)
Nomenclature:

Bits: Digits of binary numbers
Nibbles: Groups of 4 bits
Bytes: Groups of 8 bits
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Bit Operations

Bit operations: Bitwise logical expressions
Possible operations:

~
0 1
1 0

& 0 1
0 0 0
1 0 1

| 0 1
0 0 1
1 1 1

^ 0 1
0 0 1
1 1 0

not and or exclusive
or

Example:

~ 10012
01102

11002
& 10012
10002

11002
| 10012
11012

11002
^ 10012
01012
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Shift Operations

Example:

uint8_t x = 0x9d; 1 0 0 1 1 1 0 1
x = x << 2; 0 1 1 1 0 1 0 0
x = x >> 2; 0 0 0 1 1 1 0 1

Setting single bits:

(1 << 0) 0 0 0 0 0 0 0 1
(1 << 3) 0 0 0 0 1 0 0 0
(1 << 3) | (1 << 0) 0 0 0 0 1 0 0 1

Caution:
When shifting signed variables, the behaviour of the
>>-operator is not well defined in every case.
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assignment: snake



assignment: snake

Snake consisting of adjecent LEDs
Length (1 to 5 LEDs) is configured with the potentiometer (POTI)
Speed depends on the environment brightness (PHOTO)
↝ The brighter the environment is, the faster the snake should move

Mode of the snake can be toggled with a button (BUTTON0)
Normal: Switched on LEDs represent the snake
Inverted: Switched off LEDs represent the snake

⇒ You should work on the assignment in teams of two:
The submit scripts asks for your partner
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General Remarks

Variables in functions behave similar to Java/Python
↝ To solve the assignment, only local variables are necessary

The C compiler reads files from top to bottom
↝ Functions have to be declared in the right order:

1. wait()
2. drawsnake()
3. main()

⇒ Details on compiler internals are discussed in the lecture.
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Description of the Snake

Position of its head
Number associated with a LED
Range of value {0,1, . . . ,7}

Length of the snake
Integer in range of {1,2, . . . ,5}

Mode of the snake
Normal or inverted
Can be represented as 0 and 1

Speed of the snake
Here: Number of iterations of an active waiting loop
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Divide-and-conquer

Basic program flow: Which steps do always repeat?
Prevent duplicate code:
↝ Reoccurring problems can be addressed by helper functions

External visibility: Scope should be as restricted as possible
Is the state only relevant for one function?
↝ Local variable

Are more than one function accessing the same state?
↝ Global/module local variable
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Basic Rundown snake

Basic program flow: Represent snake, move snake, ...
Pseudo code:

01 void main(void) {
02 while(1) {
03 // calculate length
04 length = ...
05
06 // draw snake
07 drawSnake(head, length, mode);
08
09 // put head to next position
10 ...
11
12 // wait and determine mode
13 ...
14
15 } // end of main loop
16 }
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Representation of the Snake

Parameters of representation
Position of the head
Length
Mode

Function signature:
void drawSnake(uint8_t head, uint8_t length,
↪ uint8_t modus)
Representation depends on following Parameters:

Normal mode (glowing snake):
Switch on all LEDs that belong to the snake
Switch off all remaining LEDs

Inverted mode (dark snake):
Switch off the LEDs belonging to the snake
Switch on all remaining LEDs
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The Modulo Operator

Moving the snake
Modify the position of the head independent of the direction of
movement
Problem: What happens at the end of the LED band?

A solution: The modulo operator %
Remainder of a integer division
Attention: In C the result is negative for negative divisors
Example: b = a % 4;

a -5 -4 -3 -2 -1 0 1 2 3 4 5 6
b -1 0 -3 -2 -1 0 1 2 3 0 1 2
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Edge Detection without Interrupts

Active waiting between movements of the snake
Detect whether the button has been pressed
Detect an edge by cyclic polling the level
Differentiate between active-high & active-low
Later: Implementation using interrupts
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Hands-on: Signal Lamp
Screencast: https://www.video.uni-erlangen.de/clip/id/14038

https://www.video.uni-erlangen.de/clip/id/14038


Hands-on: Signal Lamp

Send Morse signals via RED0
Controllable with BUTTON1
Usage of library functions for button and LED
Documentation of the library inside the SPiC IDE or via
https://sys.cs.fau.de/lehre/SS24/spic/uebung/spicboard/libapi

Insert comments in the source code
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