Exercises in System Level Programming (SLP) -
Sommersemester 2024

Exercise 3

Maximilian Ott Presentation Task 1

Lehrstuhl fir Informatik 4
Friedrich-Alexander-Universitat Erlangen-Niirnberg

Z==="""= = FRIEDRICH-ALEXANDER
-~ ; = 4==——='=__= UNIVERSITAT _
Lehrstuhl fiir Verteilte Systeme = & ="== ERLANGEN-NURNBERG

und Betriebssysteme

Overview: From the Source Code to a Program

CC
(Compiler)

test.c

aufgabes.glf

led.c gce
o - (Compiler)

libspichoard libspicboard.a \
~ ledh | 7seg.o timer.o | com.o|
§ T?seg.h adch ,,f"“,’,c'? button.o,

Modules

. Preprocessor
. Compiler
. Linker

M~ WM R

. Programmer/Flasher

Interface Description (1) ® Interface Description (2)]

m Header files contain the interface of a module n Creating a .h-file (convention; same name as _c-ﬁ[e)
= Function declarations
= Preprocessor macros #ifndef COM_H
= Type definitions #define COM_H A ‘
m Header files can be included multiple times éini:i:disziii:ﬁdth data types (used in the header) +/
= led.hincludes avr/io.h
= button.hincludes avr/io.h /+ Data Types */
~ Functions from avr/io.h declared multiple times typedef enum {

ERROR_NO_STOP_BIT, ERROR_PARITY,

= Prevent Multiple inclusions/cycles ~ include-guards ERROR_BUFFER_FULL, ERROR_INVALID_ POINTER
« Definition and checking of a preprocessor macro } COM_ERROR_STATUS;
= Convention: Macro has the same name as .h-file, " replaced by "’ .
/* Functions =/
= e.g.forbutton.h ~ BUTTON_H void sb_com_sendByte(uint8_t data);
« File is only included if the macro has not already been defined [...]
#endif //COM_H

= Attention: Flat name space ~ always use unique names

Implementation: Encapsulation Implementation: Visibility & Life Span (1)

Visibility

. not static static
and Life Span

visibility block visibility block

life span block life span program
visibility program | visibility module
life span program | life span program
Function | visibility program | visbility module

Locale variable
= |nternal variables and auxiliary functions not part of the

interface Global variable
= C has a flat name space

= Unexpected accesses can lead to wrong behaviour

= Encapsulation: Visibility & life span should be restricted = Localvariables that are not declared as static:

~ auto variable (automatically allocated & freed)

= Global variables and functions declared as static, if no export
is necessary

Implementation: Visibility & Life Span (2) Implementation: Initialization of a Module (1)

static uint8_t state; // global static

) m Modules have to perform an initialization
uint8_t event_counter; // global

= For example: Configuring ports

static void f(uint8_t a) { = Java: Possible with class constructors
static uint8_t call_counter = 0; // local static « C: No such concepts

uint8_t num_leds; // local (auto) L
J5 ool %) m Workaround: Modules have to initialize themself upon the first

} function call

= Remember completion of initialization

void main(void) { = Prevent multiple initialization

/x oL %/
} = Creating an initDone-variable

m Visibility & life span should be chosen as restricted as possible » Call of the init function in each function
= initDone-variable initially set to o

= After initialization it is set to 1

~ If possible: static for global variables and functions

11

Implementation: Initialization of a Module (2)

m initDone is initially setto 0
m |s set to 1 after initialization

~ Initialization only performed once

static void init(void) { . .
static uint8_t initDone = 0; In' & Output Via PInS
if (initDone == 0) {

initDone = 1;

}

void mod_func(void) {
init();

13

General Purpose Input/Output (GPIO) Output: Active-high & Active-low

Output dependent on wiring:

active-high: high-level (logically 1; Vcc at Pin) — LED is on
active-low: low-level (logically o; GND at Pin) — LED is on

active-high active-low
m Microcontroller interact with their environment "
m Besides some predefined protocols: Arbitrary (digital) signals OFF
= Many pins can be configured as an input or an output @ N !
~ General Purpose Input/Output (GPIO) e

o o

o o

Input: Active-high & Active-low

Input dependent on wiring:

active-high: Button pressed — high-level (logically 1; V. at Pin)
active-low: Button pressed — low-level (logically o; GND at Pin)

active-high active-low] porer
©
] [arecs
s I cyseicik

Dateniat ATmegas26B
© m Eight pins are combined to an 1/0 port for the AVR
§ m Each I/0 port of the AVR is controlled by three 8-bit registers
a DDRx Data Direction Register
a0 ao PORTx Port Output Register

PINX Port Input Register
Inputs are of high impedance, a well defined level has to be present

. . m Every pin of a port has exactly one bit in each of the three register
~ Use pull-down or (internal) pull-up resistors

16 17

1/0-Port-Register (1) ©® 1/0-Port-Register (2)

PORTx: Port Output Register depends on DDRx register
m |f output: Sets level to high or low at pin i
= Bit 1 = 1 - high-level at pin i

DDRx: Data Direction Register configures pin i as an in- or output = Bit i = 0 — low-level at pin i
m Bit i = 1 - Pin i used asan output = |f input: Sets the state of the internal pull-up resistor at pin i
m Bit i = 0 — Pin i used as an input « Bit i = 1 - activates pull-up resistor for pin i

Example: « Bit 1 = 0 — deactivates pull-up resistor for pin i

Example:

[¥8 DDRC |= (1 << PC3); // PC3 as output (Pin 3 at Port C)
[?8 DDRD &= ~(1 << PD2); // PD2 as input (Pin 2 at Port D) PORTC |= (1 << PC3); // Pulls PC3 to high (LED off)

PORTC &= ~(1 << PC3); // Pulls PC3 to low (LED on)

PORTD |= (1 << PD2); // Activates internal pull up for PD2
PORTD &= ~(1 << PD2); // Deactivates internal pull up for PD2

18 19

I/O-Port-Register (3) ol

PINx: Port Input Register (read only) current value of pin i

= |f input: poll what level is set from outside
m |f output: poll whether high or low is put out

Example:

Task: LED Module

if((PIND & (1 << PD2)) == 0) { // Testing whether Pin PD2 is low
// low-level --> button is pressed

if((PIND & (1 << PD2)) !'= 0) { // Testing whether Pin PD2 is high
// high-level --> button is not pressed

20

LED Module - Overview SPiCboard Block Circuit Diagram

uee

ar

- "
| e a9
w338 Q
g e o
] g
N 330 a
[«
N 330 a
| iy e O
Sy A
x - RED1 RS =3 L
g N | 8 3
. S 3
= -y
(el ne =
i o e R 15
G) G GREENL Rz I — s
P - TR e e
[B =l o BLUEL Rg & oo s
L g
g
< 5 1 W lek ARDUINO_UNDO_R3_SHIELD
- e
a6

I

Rt . = e ; Bey Tow EE
® LED 0 (REDO) = PD6 = Port D, Pin 6 = Bit 6 at PORTD and DDRD EI %%EI
n o PR e, ‘

%E Hﬁ SPiCb d v3
. . PD3 T PDe r13 33 Fau l’ Ingfn;\ik N
m LED 7 (BLUE1) = PC2 = Port C, Pin 2 = Bit 2 at PORTC and DDRC

20817-04-20

N

LED Module - Task Excursion: const uint8_t* vs. uint8_t* const

= Implement the LED module of the libspicboard
= Same behaviour as the original
= Description:
https://sys.cs.fau.de/lehre/SS24/spic/uebung/spicboard/

m const uint8_t~

= Pointer to a constant uint8_t-value
= Value cannot be modified via the pointer

libapi/extern/group__LED.html = uint8_t* const
= Testing of the module = Constant pointer to an (arbitrary) uint8_t-value
Link your own module with a test program (test-led.c) = Pointer is not allowed to point at a different memory address
= Other parts of the library can be used for testing
m LEDs of the SPiCbhoard const uintl6_t* const uintl6_t
= Connections and names of the single LEDs can be extracted from | 0x1002 *—I—’i & 2110 |

the overview pictures

= All LEDs are active-low uintle_t* const uintle_t

i.e. they are switched on if a low-level is applied | 0x1100 ._l_»l 1302 |
= PD6 = Port D, Pin 6

23 24

Port- and Pin-Array (1) Port- and Pin-Array (2)

m Address operator: & Port
m Port array:
m Reference operator: *

(JM static volatile uint8_t * const ports[8] = { &PORTD,
02 A
03 &§PORTC };

= Definitions for ports and pins (in avr/io.h)

#define PORTD (* (volatile uint8_t *) Ox2B)
;(‘jéﬁne o6 . = Reverses the dereferencing of the address operator
= Elements of ports are addresses in the form of uint8_t
pointers
= Macro replaces PORTD by (* (volatile uint8_t *) 0x2B) = Pin array:

1. Takes the integer 0x2B (address of PORTD)

2. Castsitintoa (volatile uint8_t =) pointer (JW static uint8_t const pins[8] = { PD6, ..., PC2 };
3. Dereferences pointer * (=PORTD is accessing the register
m Access:
contents)
4. Brackets (...) enforce correct order of operations (%8 » (ports[0])

(Attention, macro!)

Compiler Settings Testing of the Module

(F8 void main(void){
02
m Create project as usual 03 // 1.) Testing with valid LED-ID
oz int8_t result = sb_led_on(REDO);

= Initial source file: test-led.c M if(result = 0)f

= Then add second source file led.c 06 /] Test failed
= When compiling, functions from your own module are used oz } // Output e.g. with 7-Segment display
O
m Additional parts of the library are included if required N // wait some seconds
10

m Code can be temporarily deactivated for testing the original BN/ ..) Testing with invalid LED-ID
functions: 12

. 1
[FM #if O 9

02
03 [EELIE]

m Pay close attention to the interface description (incl. return
values)

m Testing of all possible return values

m Give an error if the returned value is different from the
specification

= Does the compiler see this “comment”?
= How can we comment in the code again?

27 28

Hands-on: Statistics Module

Screencast: https://www.video.uni-erlangen.de/clip/id/16328

Hands-on: Statistics Module Y

= Statistics module and test program

= Functionality of the module (interface):
(¥ // Interface
(PW uint8_t avgArray(uintl6_t =a, size_t s, uintl6_t *avg);
(kM uint8_t minArray(uint16_t =a, size_t s, uintl6_t *min);
(VW uint8_t maxArray(uintl6_t =a, size_t s, uintl6_t *max);
05
([N // Internal auxiliary functions
(oyM uintl6_t getMin(uintl6_t a, uintl6_t b);
(W uint16_t getMax(uintl6_t a, uintl6_t b);

m Return value:
= 0: OK
= 1: Error

= How to proceed:
= Header file with module interface (and include guards)
= Implementation of the module (consider visibility)
= Testing of the module in the main program (incl. errors)

31

