Exercises in System Level Programming (SLP) -
Summer Term 2024

Exercise 6

Maximilian Ott

Lehrstuhl fiir Informatik 4
Friedrich-Alexander-Universitat Erlangen-Niirnberg

—
— —_— = =
= S== =
FRIEDRICH-ALEXANDER
S = A w= = UNIVERSITAT
Chair in Distributed Systems = = ="==— ERLANGEN-NURNBERG
and Operating Systems

Interrupts

Interrupts

m Procedure of an interrupt (see 18-7):

0. Hardware sets required flag

1. If interrupts are enabled and the interrupt is not masked, the
interrupt controller interrupts the current execution

2. Further interrupts are disabled

3. Current program position is saved

4. Address of the handler is read from the interrupt vector table and
is then jumped to

5. The interrupt handler is executed

6. At the end of the interrupt handler, the instruction “return from
interrupt” returns to the interrupted program and the re-enables
of the interrupts

Implementation of Interrupt Handlers

m For every interrupt, one bit for storing its state is available

m May lead to lost interrupts: An interrupt occurs during...

= the execution of an interrupt handler (interrupts too fast)
= disabled interrupts section (for synchronization of critical
sections)

m This problem cannot be prevented in general

~ Risk minimization: Interrupt handler shall be as short as
possible

= Avoid any kind of loops and function calls
= Do not use any blocking function (ADC/serial interface!)

Interrupts on the AVR

m Timer
m Serial interface

m ADC (analog digital converter)
m External interrupts by level changes at certain I/0 pins

= Choice of level- or edge-triggered

= Depend on the interrupt source
= ATmega328PB: 2 sources at the pins PD2 (INTO) and PD3 (INT1)
= BUTTONO at PD2
= BUTTON1 at PD3

m More details in the ATmega328PB data sheet

(Re-)Enabling Interrupts

m [nterrupts can be enabled and disabled by special machine
instructions
m The library avr-libc provides useful macros:
#include <avr/interrupt.h>
= sei() (setinterrupt flag): enables interrupts (delayed by one
instruction)
= c1i() (clear interrupt flag): disables all interrupts (immediately)
m Upon entering an interrupt handler, all interrupts are blocked
automatically and unblocked again as soon as the handler is
exited
m sei() should never be called from inside an interrupt handler
= Potentially infinitely nested interrupt handlers
= Possibility of a stack overflow

m At the start of the pC, interrupts are disabled by default

Configuring Interrupts

m Interrupt sense control (ISC) bits of the ATmega328PB are
located at the external interrupt control register A (EICRA)

m Position of the ISC-bits inside the register defined by macros

Interrupt INTO Interrupt on Interrupt INT1
ISCO1 | ISCOO ISC11 | ISC10
0 0 low level 0 0
0 1 either edge 0 1
1 0 falling edge 1 0
1 1 rising edge 1 1

m Example: Configuring INT1 of the ATmega328PB for a falling
edge

0¥ /+ the ISC-bits are located in the EICRA =*/
o7 EICRA &= ~(1 << ISC10); // deleting ISC10
0k EICRA |= (1 << ISC11); // setting ISC1l1

(Un-)Masking Interrupts

m Single interrupts can be enabled (= unmasked) individually
= ATmega328PB: External interrupt mask register (EIMSK)

m The bit positions inside of the register are defined by macros
INTnN

m A set bit enables the corresponding interrupt
m Example: Enabling the external interrupt INT1

o}l EIMSK |= (1 << INT1); // Unmask the external interrupt INT1

Interrupt Handler

m Registering an interrupt handler is implemented by the C library

m Macro ISR (interrupt service routine) used for defining a
handler function (#include <avr/interrupt.h>)
m Parameter: Desired vector

= Available vectors: Refer to avr-libc documentation for
avr/interrupt.h
= Example: INT1_vect for external interrupt INT1

m Example: Implement handler for INT1

#include <avr/interrupt.h>

static volatile uintl6_t counter

ISR(INT1 vect) {
counter++;

}

Synchronization

Keyword volatile

m When an interrupt occurs, event = 1 isset
m Active waiting loop waits until event != 0
m Compiler detects that event is not changed within the loop
= the value of event is only loaded once from memory into a
processor register
= endless loop

static uint8_t event = 0;
ISR(INTO vect) {
event = 1;

}

void main(void) {
while(1) {

while(event == 0) { /* wait for event =/ }
// handle event [...]

Keyword volatile

m When an interrupt occurs, event = 1isset
m Active waiting loop waits until event != 0
m Compiler detects that event is not changed within the loop

= the value of event is only loaded once from memory into a
processor register

= endless loop

m volatile enforces that the variable is loaded from memory
before every access

static volatile uint8_t event
ISR(INTO vect) {
event = 1;

}

void main(void) {

while(1) {

while(event == 0) { /* wait for event =/ }
// handle event [...]

Usage of volatile

m Missing volatile can lead to unexpected program execution

m Unnecessary use of volatile prevent certain compiler
optimizations

m Correct use of volatile is task of the programmer!

~ Use volatile as rarely as possible but as often as required

Lost Update

m Counting button presses that have to be processed
= Incremented in the interrupt handler
« Decremented in the main program to start the processing

static volatile uint8_t counter = 0;
ISR(INTO vect) {
counter++,

}

void main(void) {
while(1) {
if(counter > 0) {

counter--;

// handle pressed button
/7 L.]

11

Lost Update

Main program

instruction: counter--; ; instruction: counter++
r24, counter r25, counter

r24 r25
counter, r24 counter, r25

Line | counter | r24 | r25
— 5

Lost Update

Main program

instruction: counter--; ; instruction: counter++

r24, counter r25, counter

r24 r25
counter, r24 counter, r25

Line | counter | r24 | r25

12

Lost Update

Main program

instruction: counter--; ; instruction: counter++
r24, counter r25, counter

r24 r25
counter, r24 counter, r25

Line | counter | r24 | r25

- 5
5 5 —
5 4 —

Lost Update

Main program

instruction: counter--; ; instruction: counter++
r24, counter r25, counter

r24 r25
counter, r24 counter, r25

Line | counter | r24 | r25

- 5
5 5 —
5 4 —
5 4 5

12

Lost Update

Main program

instruction: counter--; ; instruction: counter++
r24, counter r25, counter
r24 r25

counter, r24 counter, r25

Line | counter | r24 | r25

- 5
5 5 —
5 4 —
5 4 5
5 4 6

Lost Update

Main program

instruction: counter--; ; instruction: counter++
r24, counter r25, counter
r24 r25

counter, r24 counter, r25

Line | counter | r24 | r25
- 5
5 5 —
5 4 —
5 4 5
5 4 6
6 4 6

12

Lost Update

Main program

; C instruction: counter--; ; instruction: counter++
lds r24, counter r25, counter

dec r24 i r25
sts counter, r24 counter, r25

Line | counter | r24 | r25
- 5
5 5 —
5 4 —
5 4 5
5 4 6
6 4 6
4 4 4 —

16-Bit Access (Read Write)

m Concurrent use of 16 bit values (read write)

= Incrementing in the interrupt handler
= Reading in the main program

o}y static volatile uintl6_t counter = 0;
ol ISR(INTO vect) {
03 counter++;
o4

05
o/ void main(void) {

07 if(counter > 300) {

08 sb_led_on(YELLOWO);
09 } else {

10 sb_led_off(YELLOWO);
11
12
13
14

13

16-Bit Access (Read Write)

Main program

; C instruction: if(counter>300) ; C instruction: counter++;

1lds r22, counter lds r24, counter
1lds r23, counter+1 1lds r25, counter+1

cpi r22, 0x2D adiw r24,1
sbci r23, 0x01 sts counter+1, r25
sts counter, r24

Line counter | r22 & r23 | r24 & ra25
— Ox00ff — —

16-Bit Access (Read Write)

Main program

; C instruction: if(counter>300) ; C instruction: counter++;

lds r22, counter lds r24, counter
1lds r23, counter+l 1lds r25, counter+1l

r22, 0x2D adiw r24,1

cpi
sbci r23, 0x01 sts counter+1, r25

sts counter, r24

Line counter | r22 & r23 | r24 & r25
— Ox00ff — —
2 Ox00ff Ox??ff —

14

16-Bit Access (Read Write)

Main program

; C instruction: if(counter>300)
lds
1lds
cpi
sbci

r22, counter

r23, counter+1

r22, 0x2D
r23, 0x01

; C instruction:

counter++;

lds r24, counter
lds r25, counter+1

adiw r24,1
sts counter+1l, r25
sts counter, r24

Line counter | r22 & r23 | r24 & ra25
— Ox00ff — —
2 Ox00ff Ox??ff —
Ox00ff Ox??ff Ox00ff

16-Bit Access (Read Write)

Main program

; C instruction: if(counter>300)

1lds
1lds

cpi
sbci

r22, counter

r23, counter+l1

r22, 0x2D
r23, 0x01l

; C instruction: counter++;
lds r24, counter

1lds r25, counter+1l

adiw r24,1

sts counter+1l, r25

sts counter, r24

Line counter | r22 & r23 | r24 & r25
— Ox00ff — —
2 Ox00ff Ox??ff —
Ox00ff Ox??ff Ox00ff
Ox00ff Ox??ff 0x0100

14

16-Bit Access (Read Write)

Main program

C instruction: counter++;

; C instruction: if(counter>300) ;

lds r22,
1lds r23,
r22,

cpi
sbci r23,

Main program

; C instruction: if(counter>300)

1lds
lds

r22,
23,
r22,

cpi
sbci r23,

counter
counter+1
0x2D

0x01

lds r24, counter
1lds r25, counter+1
adiw r24,1

sts counter+l, r25
sts counter, r24

Line counter | r22 & r23 | r24 & ra25
— Ox00ff — —
2 Ox00ff Ox??ff —
Ox00ff Ox??ff Ox00ff
Ox00ff Ox??ff 0x0100
0x0100 Ox??ff 0x0100

counter
counter+1
0x2D

0x01

16-Bit Access (Read Write)

; C instruction:
lds r24, counter
1lds r25, counter+1l
adiw r24,1

sts counter+1l, r25

counter++;

sts counter, r24

Line counter | r22 & r23 | r24 & r25
— Ox00ff — —
2 Ox00ff Ox??ff —
Ox00ff Ox??ff Ox00ff
Ox00ff Ox??ff 0x0100
0x0100 Ox??ff 0x0100
3 0x0100 Ox01ff —

14

16-Bit Access (Read Write)

Main program

; C instruction: if(counter>300) ; C instruction: counter++;
1lds r22, counter lds r24, counter
1lds r23, counter+1 1lds r25, counter+l

cpi r22, 0x2D adiw r24,1
sbci r23, 0x01 sts counter+1, r25
sts counter, r24

Line counter | r22 & r23 | r24 & ra25

— Ox00ff — —

2 Ox00ff Ox??ff —
Ox00ff Ox??ff Ox00ff
Ox00ff Ox??ff 0x0100
0x0100 Ox??ff 0x0100
3 0x0100 Ox01ff —

= In lines 4+5, the comparison uses Ox01ff (= 511) instead of 0x0100
(= 256). The comparison yields true and the LED is switched on.

Blocking the Handling of Interrupt on the AVR

m Many more concurrency problems are possible

= Non-atomic modification of shared data
= Analysis of the problem by the application programmer
= Choice of suitable synchronization primitives

m Solution here: Mutual exclusion by disabling interrupts

= Blocking all interrupts: c1i() and sei()
= Disabling single interrupts (EIMSK-register)

m Problem: Interrupts can be lost during a blocked section

= Critical sections have to be as short as possible

15

Lost Update

m How can a lost update be prevented?

static volatile uint8_t counter = 0;
ISR(INTO vect) {
counter++,

}
void main(void) {
while(1) {
if(counter > 0) {

counter--;

// handle pressed button
/7 L...]

Lost Update

m How can a lost update be prevented?

static volatile uint8_t counter = 0;
ISR(INTO _vect) {
counter++,

}

void main(void) {
while(1) {
if(counter > 0) {

cli();
counter--;
sei();
// handle pressed button
/][]

16-Bit Access (Read Write)

m How can a read-write anomaly be prevented?

static volatile uintl6_t counter = 0;
ISR(INTO _vect) {
counter++;

}

void main(void) {

if(counter > 300) {

sb_led_on(YELLOWO);
} else {

sb_led_off(YELLOWO);

16-Bit Access (Read Write)

m How can a read-write anomaly be prevented?

static volatile uilntl6_t counter
ISR(INTO vect) {
counter++;

}

void main(void) {
cli();
uintl6_t local_counter = counter;
sei();
if(local_counter > 300) {

sb_led_on(YELLOWO);
} else {

sb_led_off(YELLOWO);

16-Bit Access (Read Write)

m How can a read-write anomaly be prevented?

static volatile uintl6_t counter = 0;
ISR(INTO _vect) {
counter++;

}

void main(void) {

cli();
if(counter > 300) {

sb_led_on(YELLOWO);
} else {

sb_led_off(YELLOWO);
}

sei();

/7 L.

16-Bit Access (Read Write)

m How can a read-write anomaly be prevented?

static volatile uilntl6_t counter
ISR(INTO vect) {
counter++;

}

void main(void) {

cli();

if(counter > 300) {
sei();
sb_Tled_on(YELLOWO);
else {
sei();
sb_led _off(YELLOWO);

Power-Saving Modes

Power-Saving Modes of AVR Processors Y

m AVR-based devices are often powered by batteries (e.g. remotes)

m Saving energy can drastically extend the life span
m AVR processors support multiple power-saving modes

= Deactivating functional units
« Different “depths” of sleep
= Only active functional units can wake up the CPU

m Default mode: Idle

= CPU clock is stopped
= Nor more memory accesses
= Hardware (timer, external interrupts, ADC, etc.) are still active

m Documentation in ATmega328PB data sheet

18

Usage of the Sleep Modes

m Support from the avr-libc: (#include <avr/sleep.h>)

= sleep_enable() - enables the sleep mode

= sleep_cpu() - enters the sleep mode

= sleep_disable() - disables the sleep mode

= set_sleep_mode(uint8_t mode) - configures the used mode

m Documentation of avr/sleep.h in avr-libc documentation

#include <avr/sleep.h>

set_sleep_mode(SLEEP_MODE_IDLE); // use idle mode

sleep_enable(); // activate sleep mode

sleep_cpu(); // enter sleep mode

sleep_disable(); // recommended: deactivate sleep mode
— afterwards

Lost Wakeup

m Sleeping beauty (german: Dornréschenschlaf)
= Problem: There is exactly one interrupt

Main program

sleep_enable(); 0k ISR(TIMER1_COMPA_vect) {
event = 0; 02

while(!event) {

sleep_cpu();

sleep_disable();

20

Lost Wakeup

m Sleeping beauty (german: Dornréschenschlaf)
= Problem: There is exactly one interrupt

Main program

sleep_enable(); k8 ISR(TIMER1 COMPA vect) {
event = 0; 02 event
03

while(!event) {

7 Interrupt 7
sleep_cpu();

sleep_disable();

Lost Wakeup

m Sleeping beauty (german: Dornréschenschlaf)
= Problem: There is exactly one interrupt
= Solution: Disable interrupts during the critical area

Main program

sleep_enable(); ISR(TIMER1_COMPA vect) {
event = 0; event =
}

cli();
while(!event) {

sei();

sleep_cpu();

cli();
t

sei();

sleep_disable();

20

Lost Wakeup

m Sleeping beauty (german: Dornréschenschlaf)
= Problem: There is exactly one interrupt
= Solution: Disable interrupts during the critical area

Main program

sleep_enable(); k8 ISR(TIMER1 COMPA vect) {
event = 0; 02 event
03
cli();
while(!event) {

sei(); 7 Interrupt 7

sleep_cpu();

cli();
}

S OF

sleep_disable();

= What if the interrupt occurs between lines 6 and 7?

Lost Wakeup

m Sleeping beauty (german: Dornréschenschlaf)
= Problem: There is exactly one interrupt
= Solution: Disable interrupts during the critical area

Main program

sleep_enable(); 0k ISR(TIMER1_COMPA_vect) {
event = 0; 02

cli();

while(!event) {
sei(); ¢ Interrupt /
sleep_cpu();
cli();

t

sei();

sleep_disable();

= Solution: sei() is executed atomically with next line 20

Assignment: Dexterity Game

Assignment: Dexterity Game (1)

m Game cursor moves over the LED strip and inverts (toggles) the
state of the LED

m LED state is retained if the button is pressed
m Goal: Switch on all LEDs

Start Goal
006060 000 O
0000 000 .
0000 000 o
0000 000 o
0000 o000 o
00 - @
0@ 000 @0 0 o
At At At At ... At At
+ Button + Button

21

Assignment: Dexterity Game (2)

0¥ void main(void) {

02
03
04
05
06
07
08
09
10
11
12
13
14
15

m After each level, a winning sequence is displayed via the LEDs

//
//

wh

Initialisation

[...]

ile(1) {
// starting level
/7 [...]

// show win sequence

/7 [...]

// update level
/7 [...]

Detect a Button Press

m Goals:

Edge detection in hardware
Handle events using interrupts
No use of the libspicboard

m Details:

BUTTON® is wired to PD2

Configure PD2 as input (with activated pull-up resistor)

PD2 is input of INTO

Which level/edge has to be configured for the interrupt?

How does a minimal interrupt handler for this assignment look
like?

23

Difficulty

m Speed of the game determines its difficulty

= Passive waiting with the timer module of the libspicboard

m Difficulty increases with each level [
m Speed converges to a maximum

= Series of waiting times: f; = ¢ + b (a and b are constants)

fi

HHHHHHHH||||l||||||||||||||||||IIIIIII

Hands-on: Simple Interrupt Counter

Counting activations of BUTTONO (PD2)

Detect activation with the help of interrupts

Output the current counter value using the 7-segment display
Enter a CPU sleeping state whenever the value is even
“Standby” LED switched on during the sleep mode (BLUEO)

Hints:

= Detection of the activation without the 1ibspicboard
= PD2/BUTTONGO is the input of INTO
= Interrupt on a falling edge:

— EICRA(ISCO00) 0

— EICRA(ISCO1) = 1

= 7-segment display needs regular interrupts to display values

25

