Exercises in System Level Programming (SLP) -
Summer Term 2024

Exercise 7

Maximilian Ott

Lehrstuhl fiir Informatik 4
Friedrich-Alexander-Universitat Erlangen-Niirnberg

—
— —_— = =
= S== =
FRIEDRICH-ALEXANDER
S = A w= = UNIVERSITAT
Chair in Distributed Systems = = ="==— ERLANGEN-NURNBERG
and Operating Systems

Presentation Assignment 3

AVR Timer

Timer: Motivation

m Common task for pController programming:

= Regularly updating an output (e. g. frame rate)
Regularly reading of a value (e. g. serial console)
Pulse width modulation (PWM)
Passive waiting

= Implementation using a timer

Timer: Functionality

m A timer modifies a counter in every cycle
« Increment (default)
= Decrement
m When a previously configured event occurs, an interrupt is
generated

= Counter reaches a specific value
» Counter overflows

m The ATmega328PB provides 5 different timers:

= TIMER{O, 2}: 8-bit counter
« TIMER{1,3,4}: 16-bit counter

= For all exercise tasks: TIMERO
= Used by the libspicboard: TIMER{1,2, 4}

Timer: Configuration (Timer clock speed)

= How fast does the timer run:
= TCCROB: TCO control register B
= CSxx: Clock select bits
= Prescaler: Amount of CPU cycles until the counter is incremented
= What happens when the CPU enters a sleeping state?

CS02 | CS01 | CSO0 Description
0 0 0 Timer off
0 0 1 prescaler 1
0 1 0 prescaler 8
0 1 1 prescaler 64
1 0 0 prescaler 256
1 0 1 prescaler 1024
1 1 0 Ext. clock (falling edge)
1 1 1 Ext. clock (rising edge)

Timer: Configuration (Timer clock speed)

CS02 | CSO1 | CS00 Description
0 0 0 Timer off
0 0 1 prescaler 1
0 1 0 prescaler 8
0 1 1 prescaler 64
1 0 0 prescaler 256
1 0 1 prescaler 1024
1 1 0 Ext. clock (falling edge)
1 1 1 Ext. clock (rising edge)

(o8 static void init(void) {
02 // Activate timer with prescaler 64
03 TCCROB &= ~(1 << CS02);

o4 TCCROB |= (1 << CS01) | (1 << CS00);
05
06
07

Timer: Configuration (Trigger Event)

= When does the timer trigger an interrupt:
= Overflow: When the counter flows over
= Match: When the counter reaches a specific value
= Register OCROA (TIMERO Output Compare Register A)
= Register OCROB (TIMERO Output Compare Register B)
= Interrupts can be unmasked individually
=« TIMSKO: TIMERO Interrupt Mask Register

Bit ISR Description

TOIEO TIMERO_OVF_vect TIMERO Overflow (Interrupt Enable)
OCIEOA | TIMERO_COMPA_vect | TIMERO Output Compare A (...)
OCIEOB | TIMERO_COMPB_vect | TIMERO Output Compare B (...)

Timer: Configuration (Trigger Event)

= When does the timer trigger an interrupt:
= Overflow: When the counter flows over

=

=

= Interrupts can be unmasked individually
« TIMSKO: TIMERO Interrupt Mask Register

Bit ISR Description

TOIEO TIMERO_OVF_vect TIMERO Overflow (Interrupt Enable)
OCIEOA | TIMERO_COMPA_vect | TIMERO Output Compare A (...)

OCIEOB | TIMERO_COMPB_vect | TIMERO Output Compare B (...)

Timer: Configuration (Trigger Event)

Bit ISR Description

TOIEO® TIMERO_OVF_vect TIMERO Overflow (Interrupt Enable)
OCIEOA | TIMERO_COMPA_vect | TIMERO Output Compare A (...
OCIEOB | TIMERO_COMPB_vect | TIMERO Output Compare B (...)

ISR(TIMERO_OVF_vect) {
/7 [...]
}

static void init(void) {

// Activate overflow interrupt
TIMSKO |= (1 << TOIEO);

Timer: Example

m Reminder: prescaler ¢ {1, 8, 64, 256, 1024}

m Example:

= 8-bit timer with overflow interrupt

= CPU frequency: 16 MHz (ATmega328PB)

= Goal: Count with a cycle of length 1s
= Which prescaler is the most resource efficient?
= How many overflow interrupts are required until 1s has passed?
= How big is the error that we have to accept?

Task: Traffic Light

Assignment: Traffic Light

O SPiCsim

MOO®IA WX °8 g

o
OB
®g:

E

pleoqdlds

BUIYIE | B30

B e
diE

| Push
Interference NER

b1 oygelL

ampel.elf on atmega328pb (16 MHz / 5.0 V): 375,074 cycles (sleeping)

= Implementation of a (pedestrian) traffic light with waiting-time
display

Finite State Machines

Start Condition A

State 1 State 2

Condition B

m States with specific attributes; well-defined initial state
m Transition depends on certain conditions

Traffic Light as a Finite State Machine

ed Car_YellowRed Car_Green
Start
o—) 1s 1s
—— ——
—
oy L 1§
Button0
pressed
PD_Waiting
5s

5 S
PD_Green Car_| Red Car_ YeIIow

13——I—iL

Traffic Light as a Finite State Machine

PD_Red Car_YellowRed Car_ Green

Start
I I
_> _>
Button0
pressed

Error State PD. Waltlng

Error resolved Error
5s Buttonl Buttonl
e \
PD_Green Car_Red Car_ Yellow

II 2s II 1s I
T — —
g ® m®

=@

Choosing States: enum-Types

m Using states with hardcoded integer values is prone to errors

= Hard to memorize
= Range of value cannot easily be restricted

m Better enum:

(o} enum state { STATE_RED, STATE_YELLOW, STATE_GREEN };
02
ok enum state my_state = STATE_RED;

m With typedef even more readable:

o} typedef enum { STATE_RED, STATE_YELLOW, STATE_GREEN } state;
02
ok state my_state = STATE_RED;

Choosing States: switch-case Instruction

switch (my_state) {
case STATE_RED:

break;
case STATE_YELLOW:

break;
case STATE_GREEN:

break;
default:
// maybe invalid state

Avoid any 1f-else-cascades

switch-expression has to be an integer (or even better: enum)
Do not forget the break-instruction!

Ideal for handling systems with different states

= Implementation of finite state machines

11

Switching States

m Each transition is triggered by an interrupt
= Configure BUTTONG and BUTTONZ1 as interrupt inputs
= Which edge should trigger the interrupt?

= Configure TIMERO (interval: 1 second)

m Do not use the timer module of the libspichoard when
submitting

= However, its use can be helpful for debugging

m Hints:

= Implement each function exactly as specified in the description
(reference implementation available)

= Model presses of the buttons and alarms as events

= Wait passively for all interrupts

= “Deactivate” the button by simply ignoring its interrupt
(It is not necessary to modify the interrupt configuration)

= Mapping to a finite state machine can be useful

= Usage of volatile always needs a reason

Hands-on: Coffee Machine

Screencast: https://www.video.uni-erlangen.de/clip/id/17647

Hands-on: Coffee Machine (1)

» Status LED
EButton

A

Sensor Heating element

Pump

m Learning goals:

« Finite state machines
= Timers and alarms
= Interrupts & sleep modes

15

Hands-on: Coffee Machine (1)

» Status LED
EButton

A

Heating element

Pump

m Wiring:
= Pump & heating: Port D, Pin 5 (active-low)
= Button: INTO an Port D, Pin 2 (active-low)

= Sensor: INT1 an Port D, Pin 3 (water: high; no water: low)
= State LED:

— BLUEO: STANDBY
— GREENO: ACTIVE
— REDO: NO_WATER

Hands-on: Coffee Machine (2)

STANDBY
m Machine is switched off
m Pump and heating are off
m User can start making coffee by pressing the
button
m |nitial state
ACTIVE
Machine is switched on
Pump and heating are on
Water tank is not empty
User can stop the machine by pressing the button

NO_WATER
m Coffee machine shows that not enough water is in
the tank
m Pump and heating are off
Time period: 2 seconds

16

Hands-on: Coffee Machine (2)

start —>»

m Hints:
= Pressed button & change of water level by interrupts
= State LED: void setLEDState(state_t state)
= Waiting phases can be implemented using the single-shot alarms
= During waiting phases always enter a power saving mode

Hands-on: Coffee Machine (3)

DDRx Configuration of pin i of port x as in-/output
m Bit 1 = 1 - Piniasoutput
m Bit 1 = 0> Piniasinput

PORTx Mode of operation depends on DDRXx:

m If pin i is configured as output, then bit i in the PORTxX
register controls whether a high level or a low level has
to be generated at pin i

= Bit 1 1 — high level at pin i
» Bit 1 = 0~ lowlevelapini
m If piniis configured as input, then the internal pull-up
resistor can be activated
= Bit 1 = 1 - pull-up resistor at pin i (level is pulled
high)
= Bit 1 = 0 — piniconfigured as tri-state

PINX Bitireturns the current level of pin i at port x (read only)

18

Hands-on: Coffee Machine (4)

= |nterrupt sense control (ISC) bits of the ATmega328PB are
located at the external interrupt control register A (EICRA)

m Position of the ISC-bits inside the register defined by macros

Interrupt INTO

Interrupt on

Interrupt INT1

ISCO1 | ISCOO ISC11 | ISC10
0 0 low level 0 0
0 1 either edge 0 1
1 0 falling edge 1 0
1 1 rising edge 1 1

m ATmega328PB: External interrupt mask register (EIMSK)

m The position of the bits in this register is also defined by

macros INTn

19

