
Exercises in System Level Programming (SLP) –
Summer Term 2024

Exercise 7

Maximilian Ott

Lehrstuhl für Informatik 4
Friedrich-Alexander-Universität Erlangen-Nürnberg

Chair in Distributed Systems
and Operating Systems

Presentation Assignment 3

AVR Timer

Timer: Motivation

Common task for µController programming:
Regularly updating an output (e. g. frame rate)
Regularly reading of a value (e. g. serial console)
Pulse width modulation (PWM)
Passive waiting
…

⇒ Implementation using a timer

1

Timer: Functionality

A timer modifies a counter in every cycle
Increment (default)
Decrement

When a previously configured event occurs, an interrupt is
generated

Counter reaches a specific value
Counter overflows
(external event occurs)

The ATmega328PB provides 5 different timers:
TIMER{0,2}: 8-bit counter
TIMER{1,3,4}: 16-bit counter

⇒ For all exercise tasks: TIMER0
⇒ Used by the libspicboard: TIMER{1,2,4}

2

Timer: Configuration (Timer clock speed)

How fast does the timer run:
TCCR0B: TC0 control register B
CSxx: Clock select bits
Prescaler: Amount of CPU cycles until the counter is incremented
What happens when the CPU enters a sleeping state?

CS02 CS01 CS00 Description
0 0 0 Timer off
0 0 1 prescaler 1
0 1 0 prescaler 8
0 1 1 prescaler 64
1 0 0 prescaler 256
1 0 1 prescaler 1024
1 1 0 Ext. clock (falling edge)
1 1 1 Ext. clock (rising edge)

3

Timer: Configuration (Timer clock speed)

CS02 CS01 CS00 Description
0 0 0 Timer off
0 0 1 prescaler 1
0 1 0 prescaler 8
0 1 1 prescaler 64
1 0 0 prescaler 256
1 0 1 prescaler 1024
1 1 0 Ext. clock (falling edge)
1 1 1 Ext. clock (rising edge)

01 static void init(void) {
02 // Activate timer with prescaler 64
03 TCCR0B &= ~(1 << CS02);
04 TCCR0B |= (1 << CS01) | (1 << CS00);
05
06 // [...]
07 }

3

Timer: Configuration (Trigger Event)

When does the timer trigger an interrupt:
Overflow: When the counter flows over
Match: When the counter reaches a specific value
⇒ Register OCR0A (TIMER0 Output Compare Register A)⇒ Register OCR0B (TIMER0 Output Compare Register B)

Interrupts can be unmasked individually
TIMSK0: TIMER0 Interrupt Mask Register

Bit ISR Description
TOIE0 TIMER0_OVF_vect TIMER0 Overflow (Interrupt Enable)
OCIE0A TIMER0_COMPA_vect TIMER0 Output Compare A (…)
OCIE0B TIMER0_COMPB_vect TIMER0 Output Compare B (…)

4

Timer: Configuration (Trigger Event)

When does the timer trigger an interrupt:
Overflow: When the counter flows over
Match: When the counter reaches a specific value
⇒ Register OCR0A (TIMER0 Output Compare Register A)⇒ Register OCR0B (TIMER0 Output Compare Register B)

Interrupts can be unmasked individually
TIMSK0: TIMER0 Interrupt Mask Register

Bit ISR Description
TOIE0 TIMER0_OVF_vect TIMER0 Overflow (Interrupt Enable)
OCIE0A TIMER0_COMPA_vect TIMER0 Output Compare A (…)
OCIE0B TIMER0_COMPB_vect TIMER0 Output Compare B (…)

4

Timer: Configuration (Trigger Event)

Bit ISR Description
TOIE0 TIMER0_OVF_vect TIMER0 Overflow (Interrupt Enable)
OCIE0A TIMER0_COMPA_vect TIMER0 Output Compare A (…)
OCIE0B TIMER0_COMPB_vect TIMER0 Output Compare B (…)

01 ISR(TIMER0_OVF_vect) {
02 // [...]
03 }
04
05 static void init(void) {
06 // Activate overflow interrupt
07 TIMSK0 |= (1 << TOIE0);
08
09 // [...]
10 }

4

Timer: Example

Reminder: prescaler ∈ {1, 8, 64, 256, 1024}

Example:
8-bit timer with overflow interrupt
CPU frequency: 16MHz (ATmega328PB)
Goal: Count with a cycle of length 1 s⇒ Which prescaler is the most resource efficient?⇒ How many overflow interrupts are required until 1 s has passed?⇒ How big is the error that we have to accept?

5

Task: Traffic Light

Assignment: Traffic Light

Implementation of a (pedestrian) traffic light with waiting-time
display

6

Finite State Machines

States with specific attributes; well-defined initial state
Transition depends on certain conditions

7

Traffic Light as a Finite State Machine

8

Traffic Light as a Finite State Machine

9

Choosing States: enum-Types

Using states with hardcoded integer values is prone to errors
Hard to memorize
Range of value cannot easily be restricted

Better enum:
01 enum state { STATE_RED, STATE_YELLOW, STATE_GREEN };
02
03 enum state my_state = STATE_RED;

With typedef even more readable:
01 typedef enum { STATE_RED, STATE_YELLOW, STATE_GREEN } state;
02
03 state my_state = STATE_RED;

10

Choosing States: switch-case Instruction

01 switch (my_state) {
02 case STATE_RED:
03 ...
04 break;
05 case STATE_YELLOW:
06 ...
07 break;
08 case STATE_GREEN:
09 ...
10 break;
11 default:
12 // maybe invalid state
13 ...
14 }

Avoid any if-else-cascades
switch-expression has to be an integer (or even better: enum)
Do not forget the break-instruction!
Ideal for handling systems with different states⇒ Implementation of finite state machines

11

Switching States

Each transition is triggered by an interrupt
Configure BUTTON0 and BUTTON1 as interrupt inputs
⇒ Which edge should trigger the interrupt?

Configure TIMER0 (interval: 1 second)
Do not use the timer module of the libspicboard when
submitting
⇒ However, its use can be helpful for debugging

12

Hints

Hints:
Implement each function exactly as specified in the description
(reference implementation available)
Model presses of the buttons and alarms as events
Wait passively for all interrupts
“Deactivate” the button by simply ignoring its interrupt
(It is not necessary to modify the interrupt configuration)
Mapping to a finite state machine can be useful
Usage of volatile always needs a reason

13

Hands-on: Coffee Machine
Screencast: https://www.video.uni-erlangen.de/clip/id/17647

Hands-on: Coffee Machine (1)

15

Learning goals:
Finite state machines
Timers and alarms
Interrupts & sleep modes

Hands-on: Coffee Machine (1)

15

Wiring:
Pump & heating: Port D, Pin 5 (active-low)
Button: INT0 an Port D, Pin 2 (active-low)
Sensor: INT1 an Port D, Pin 3 (water: high; no water: low)
State LED:

BLUE0: STANDBY
GREEN0: ACTIVE
RED0: NO_WATER

Hands-on: Coffee Machine (2)

STANDBY
Machine is switched off
Pump and heating are off
User can start making coffee by pressing the
button
Initial state

ACTIVE
Machine is switched on
Pump and heating are on
Water tank is not empty
User can stop the machine by pressing the button

NO_WATER
Coffee machine shows that not enough water is in
the tank
Pump and heating are off
Time period: 2 seconds

16

Hands-on: Coffee Machine (2)

NoWater

Standbystart

Active

2 s
eco
nd
s

Bu
tto
n +
tan
k e
mp
ty

Button + tank okay

Tank empty
Button pressed

Hints:
Pressed button & change of water level by interrupts
State LED: void setLEDState(state_t state)
Waiting phases can be implemented using the single-shot alarms
During waiting phases always enter a power saving mode

17

Hands-on: Coffee Machine (3)

DDRx Configuration of pin i of port x as in-/output
Bit i = 1 → Pin i as output
Bit i = 0 → Pin i as input

PORTx Mode of operation depends on DDRx:
If pin i is configured as output, then bit i in the PORTx
register controls whether a high level or a low level has
to be generated at pin i

Bit i = 1 → high level at pin i
Bit i = 0 → low level a pin i

If pin i is configured as input, then the internal pull-up
resistor can be activated

Bit i = 1 → pull-up resistor at pin i (level is pulled
high)
Bit i = 0 → pin i configured as tri-state

PINx Bit i returns the current level of pin i at port x (read only)

18

Hands-on: Coffee Machine (4)

Interrupt sense control (ISC) bits of the ATmega328PB are
located at the external interrupt control register A (EICRA)
Position of the ISC-bits inside the register defined by macros

Interrupt INT0 Interrupt on Interrupt INT1
ISC01 ISC00 ISC11 ISC10
0 0 low level 0 0
0 1 either edge 0 1
1 0 falling edge 1 0
1 1 rising edge 1 1

ATmega328PB: External interrupt mask register (EIMSK)
The position of the bits in this register is also defined by
macros INTn

19

