Exercises in System Level Programming (SLP) -
Summer Term 2024

Exercise 12

Maximilian Ott

Lehrstuhl fiir Informatik 4
Friedrich-Alexander-Universitat Erlangen-Niirnberg

—
— —_— = =
= S== =
FRIEDRICH-ALEXANDER
S = A w= = UNIVERSITAT
Chair in Distributed Systems = = ="==— ERLANGEN-NURNBERG
and Operating Systems

Presentation Assignment 7

Signals

Signals

m Usage of signals
= Signaling kernel events to a process
= Signaling events between processes
m Similar to interrupts on AVR
m Two types of signals

= Synchronous signals: Triggered by process activity (trap)
= Access to invalid memory, invalid instruction

= Asynchronous signals: Triggered “from outside” (interrupt)
= Timer, keyboard input

m Default signal handlers already defined

Selected POSIX-Signals

m The standard behavior for most signals is the termination of the
process, some signals additionally create a core dump.

» SIGALRM (Term): Alarm clock (alarm(2), setitimer(2))

= SIGCHLD (Ign): Child process terminated, stopped, or continued
= SIGINT (Term): Terminal interrupt signal (Shell: CTRL-C)

= SIGQUIT (Core): Terminal quit signal (Shell: CTRL-\)

= SIGKILL (cannot be caught or ignored): Kill

= SIGTERM (Term): Termination signal; standard signal of kil1(1)
= SIGSEGV (Core): Invalid memory reference

= SIGUSR1, SIGUSR2 (Term): User-defined signal 1/2

m Referto signal(7)

Sending Signals

m Shell command kill1(1)

(kM kill -USR1 <pid>

= Parameter: Signal number or signal without “SIG” prefix
m System call kil1(2)

o8 int kill(pid_t pid, int signo);

Setting a Process Wide Signal Mask

m Configuration with the help of a variable of the type sigset_t
m Helper functions configure the signal mask

= sigemptyset(3): Remove all signals from a mask

= sigfillset(3):Add all signals to a mask

= sigaddset(3): Add one signal to a mask

= sigdelset(3): Remove one signal from a mask

= sigismember(3): Query, whether a signal is included in a mask

m Set signals are blocked
m AVR analogue: EIMSK-register

Setting a Process Wide Signal Mask

m Setting the mask with

(o} int sigprocmask(int how, const sigset_t =*set, sigset_t =*oset);

m how: Operation

» SIG_SETMASK: Sets an absolute signal mask
= SIG_BLOCK: Blocks signals relative to the current mask
= SIG_UNBLOCK: Unblocks signals relative to the current mask

m oset: Stores copy of old signal mask (optional)
m The signal mask is inherited when using fork(2)/exec(3)

Examples

sigset_t set;
sigemptyset(&set);

sigaddset(&set, SIGUSR1);
sigprocmask(SIG_BLOCK, &set, NULL); /* Blocks SIGUSR1 =/

m AVR analogue: Blocking critical sections (c1i(), sei())

sigaction - Signal Handler

m Configuration using the struct sigaction

o} struct sigaction {
02 void (*sa_handler)(int); // Handler function

03 sigset_t sa_mask; // Additionally blocked signals
o4 int sa_flags; // More settings

o5 i

m Signal handler can be configured with sa_handler:

= SIG_IGN: Ignore signal
= SIG_DFL: Set to default signal handler
= Function pointer

m SIG_IGN and SIG_DFL can be inherited with exec(3),
function pointers can’t. Why?

m AVR analogue: ISR(..), alarm handler

sigaction - Mask

m Configuration with the help of the struct sigaction

o} struct sigaction {
02 void (*sa_handler)(int); // Handler function

03 sigset_t sa_mask; // Additionally blocked signals
o4 int sa_flags; // More settings

o5 i

m During the handling of a signal, following signals are disabled:

= Signal mask upon the signal occurred
= Additionally: Triggered signal
= Additionally: Signals in sa_mask

= Synchronization of multiple signal handlers with sa_mask

sigaction - Flags

m Configuration with the help of the struct sigaction

struct sigaction {
void (*sa_handler)(int); // Handler function
sigset_t sa_mask; // Additionally blocked signals
int sa_flags; // More settings

}

m sa_flags influence the behavior when the signal is received
m For SLP: sa_flags=SA_RESTART

Setting the Signal Handler

m Configuration with the help of the struct sigaction

(o struct sigaction {
02 void (*sa_handler)(int); // Handler function

03 sigset_t sa_mask; // Additionally blocked signals
04 int sa_flags; // More settings
o5 W

m Applying the configuration

#include <signal.h>

int sigaction(int sig, const struct sigaction xact,
struct sigaction =*oact);

sigaction - Example

(W struct sigaction {
02 void (*sa_handler)(int); // Handler function

03 sigset_t sa_mask; // Additionally blocked signals
04 int sa_flags; // More settings

o5 Wiy

m Installing a handler for STIGUSR1

#include <signal.h>

static void my_handler(int sig) {
/7 L.]

}

int main(int argv, char =argv[]) {
struct sigaction action;
action.sa_handler = my_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = SA_RESTART;
sigaction(SIGUSR1, &action, NULL);
/7 L.]

Waiting for Signals

m Problem: Waiting for a signal inside a critical section

1. Unblock the signal

2. Passively wait for the signal (go to sleep mode)
3. Block signal

4. Execute critical section

m Operations have to be executed atomically as one!

(kM #include <signal.h>
(P8 int sigsuspend(const sigset_t =*mask);

sigsuspend(2) sets a temporary signal mask
Process is blocked until a signal is received

Signal handler is executed

4. sigsuspend(2) restores the original signal mask

1.
2.
3.

m AVR analogue: Sleep loop, sleep_cpu()

11

sigsuspend - Example

m Block SIGUSR1 inside the critical section
m Wait for the signal

sigset_t sync_mask, old_mask;
sigemptyset(&sync_mask);
sigaddset(&sync_mask, SIGUSR1);

sigprocmask(SIG_BLOCK, &sync_mask, &old_mask);
while('!event) {
sigsuspend(&old_mask);

}
sigprocmask(SIG_SETMASK, &old_mask, NULL);

POSIX-Signals vs. AVR-Interrupts

Description Interrupts Signals
Install handler ISR() macro sigaction(2)
Trigger Hardware Processes with
kill(2) or operating
system
Synchronization cli(), sei() sigprocmask(2)
Waiting for signals | sei(); sleep_cpu() sigsuspend(2)

m Signals and interrupts are similar concepts
m Synchronization can usually be implemented identical

13

Task: mish

Task: mish - Part b)

Handling the signal SIGINT

m Configuring the signal handler for CTRL+C
m SIGINT is send to all processes in the terminal

$> ./mish
mish> sleep 2
Exit status [5321] = 0

mish> sleep 10000
e # CTRL+C

$>

= On CTRL+C both sleep and mish get terminated

m Changing the signal handler:

= Parent: ignore the signal (SIG_IGN)
= Child: default behaviour (SIG_DFL)

14

Task: mish - Part b)

Collection of zombie processes

m Until now: collection with waitpid(2) (blocking)

m Signal SIGCHLD indicates that a child process changed its state

= child process got stopped
= child process terminated

m Now: collection with waitpid(2) (not blocking)

= Waiting for the change of state with sigsuspend(2)

Task: mish - Part c)

Support for background processes

m Commands with trailing '&’
= background process
m Example: ./sleep 10 &
m Output of the process ID and the prompt

m Afterwards new commands should be receivable

Starting a background process with &
mish> sleep 10 &

Started [2110]

mish> 1s

Makefile mish mish.

Exit Status [2115]

Exit status [2110]

16

Task: mish - Part c)

Support for background processes

m While waiting for the termination of foreground processes, all
terminating background processes should be collected
immediately

Starting multiple background processes
mish> sleep 3 &

Started [2110]

mish> sleep 5 &

Started [2115]

mish> sleep 10 &

Started [2118]

Starting a foreground process

mish> sleep 20

Exit Status [2110] sleep 3 &
Exit Status [2115] sleep 5 &
Exit Status [2118] sleep 10 &
Exit Status [2121] sleep 20
mish>

Task: mish - Part c)

m Extension of the basic cycle

Waiting for input from the user

Creating a new process

Parent: Waiting for the termination of the child
Child: Starting program

Child: Program terminates

Parent: Outputting the state of the child

o E W E

Input fork() wait()
N\ N
1 2
@ 257 3 O,
Minimal Shell /y@‘s\ ’,'\ Output
(PID: 41) (0, P~ PO
/0. OC@ \\ s 6\%
exec() exit()

18

Task: mish - Part c)

m Extension of the basic cycle

1. Waiting for input from the user

2. Creating a new process

3. Parent: Waiting for the termination of the child (only
foreground)

4. Child: Starting program

5. Child: Program terminates

6. Parent: Outputting the state of the child

%’b&é\b
Input fork() &° tgﬁd wait()
@) : 3) 6
257 3
Minimal Shell Nor S ’,'\ Output
(PID: 41) SIS PR
. O(‘@ S ” S\Qo
exec() exit()

Exam Preparation

Next Week: Mock Exam (link to PDF will be on the website)

19

Hands-on: Stopwatch

Screencast: https://www.video.uni-erlangen.de/clip/id/19835

Hands-on: Stopwatch

$./stopwatch

Press Ctrl+C (SIGINT) to start and stop
“CStarted...

1 sec

2 sec

3 sec

4 sec

“CStopped.

Duration: 4 sec 132 msec

m Procedure:
= Stopwatch is started by signal SIGINT
— Each second, the current duration is printed (format: “3 sec”)
= Stopwatch is stopped again by the next occurrence of SIGINT

— Prints duration incl. milliseconds (format: “4 sec 132 msec”)
— Terminates afterwards

m Internally, SIGALRM and setitimer(2) are used
m Remember to protect critical sections

Recap: Signals

1. Install signal handler: sigaction(2)

struct sigaction act;

act.sa_handler = SIG_DFL; // Signature of the handler: void f(int
< signum)

act.sa_flags = SA_RESTART;

sigemptyset(&act.sa_mask);

sigaction(SIGINT, &act, NULL);

2. Blocking/Unblocking of signals: sigprocmask(2)

sigset_t set;

sigemptyset(&set);

sigaddset(&set, SIGUSR1);

sigprocmask(SIG_BLOCK, &set, NULL); /* Blocks SIGUSR1 =/

// critical section

sigprocmask(SIG_UNBLOCK, &set, NULL); /* Unblocks SIGUSR1 x/

Recap: Signals

3. Waiting for signals: sigsuspend(2)

sigprocmask(SIG_BLOCK, &set, &§old); /* Blocks signals =/
while(event == 0){

sigsuspend(&old); /* Waits for signals */

}
sigprocmask(SIG_SETMASK, &old, NULL); /* Unblocks signals =/

22

Alarms with setitimer (1)

m Configure timer with setitimer(2)

#include <sys/time.h>

int setitimer(int which, const struct itimerval *new_value,
struct itimerval =*old_value);

m Parameters:

which Here: ITIMER_REAL (physical time)
new_value Setting the new Configuration
old_value Reading the old configuration

m SIGALRM: Timer is expired or alarm occurred
— Default handling: terminate program
— Install custom signal handler

Alarms with setitimer (2)

m Structures for configuration

struct timeval {
time_t tv_sec; /* seconds =/
suseconds_t tv_usec; /* microseconds =*/

b

Describes time interval with tv_sec sand tv_usec us

struct itimerval {

struct timeval it_interval; /* Interval for periodic timer =/

struct timeval it _value; /* Time until next expiration =/

b
First alarm after interval 1t _value

afterwards periodic alarm with interval 1t_interval
m Special values

it_interval = {0, 0} Single shotalarm
it _value = {0, 0} Cancel alarm

24

