
SLP-assignment #7: printdir

(12 points, in groups of two)

Develop a program printdir that - similar to the UNIX command ls(1) - lists the contents of different
directories.

It is recommended to approach the problem step-by-step:

(a) First, write a program that prints all entries of the current directory ('.') line by line. Entries
that have a name starting with '.' (i.e., hidden files) should be ignored. (opendir(3), readdir(3),
closedir(3))

(b) Extend the program to also print out the file size right in front of the name. Size and name should be
divided by a tabulator ('\t'). At the end of the output, the total number of files and their combined
size should be printed. For these two values you can ignore all non-regular files. (lstat(2))

(c) Now evaluate the parameters argv. All passed parameters have to interpreted as paths to directories
and be handled like in (a) and (b). The output of a directory should start with '<Directory_Name>:\n'.
If no parameter is given, the current directory should be listed.

Hints:

• Your program only needs to handle file names and paths up to a length of 1024 characters1. Make
sure to provide a suitable error message when this limit is exceeded.

• The functions for dealing with strings from string.h are of great use for this assignment.

• Always give a reason why you use the volatile keyword. If the same reasoning holds for multiple
variables, you can justify them together.

• In the directory /proj/i4spic/<login>/pub/aufgabe7/ you will find the file printdir that con-
tains a reference implementation.

• Always make sure to give out meaningful error messages on the standard error stream.
(fprintf(stderr,...)(3) / perror(3))

• You can test your program with valgrind. This may help when searching for errors. Suppressed
errors can be ignored. More error messages can be obtained by using valgrind with the flags
--leak-check=full --show-reachable=yes and building the binary program with debug sym-
bols.

• Your program has to compile with the following flags:
gcc -std=c11 -pedantic -D_XOPEN_SOURCE=700 -Wall -Werror -O3 -o printdir printdir.c
This configuration is also used for grading.

• Functions of the libc that do not require error handling in SLP can be seen online in the Linux
libc-Doku.

• You are free to write a makefile that includes instructions on how to build the program with
the tool make. To do this, you can create a file called Makefile inside the submission directory
(aufgabe7/). In the first line write
CFLAGS = -std=c11 -pedantic -D_XOPEN_SOURCE=700 -Wall -Werror -O3
Then you can build the file from the terminal by calling make printdir or with the make button
inside the SPiC-IDE.

1Alternatively PATH_MAX from limits.h can be used.

Exercises for SLP (SS 2024) FAU Erlangen-Nürnberg
Department Informatik, Lehrstuhl für Informatik 4

https://sys.cs.fau.de/lehre/current/slp/exercises/linux-libc-doc/extern/index.html
https://sys.cs.fau.de/lehre/current/slp/exercises/linux-libc-doc/extern/index.html


Example Output

$ cd /proj/i4spic/<login >/pub/aufgabe7
$ ./ printdir test/first_path test/second_path
test/first_path:
157 file2.txt
127 file1.txt
4096 test_dir
2 Files; 284 Bytes
test/second_path:
115 fileB.txt
4096 dir2
116 fileA.txt
4096 dir1
2 Files; 231 Bytes

You can test your implementation for the same directory and should get the same output:

$ cd /proj/i4spic/<login >/ aufgabe7/
$ ./ printdir /proj/i4spic/<login >/pub/aufgabe7/test/first_path \

/proj/i4spic/<login >/pub/aufgabe7/test/second_path
[...]

This, however, does not replace extensive testing with other directories.

Deadline

T01 30.06.2024 18:00:00
T02 30.06.2024 18:00:00
T03 01.07.2024 18:00:00
T04 02.07.2024 18:00:00
T05 02.07.2024 18:00:00
T06 03.07.2024 18:00:00
T07 03.07.2024 18:00:00
T08 04.07.2024 18:00:00
T09 01.07.2024 18:00:00

Exercises for SLP (SS 2024) FAU Erlangen-Nürnberg
Department Informatik, Lehrstuhl für Informatik 4


