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Introduction

Deepen knowledge of concepts and techniques

of computer science and software development
= Starting point: Algorithms, Programming, and Data Representation
= Main focus: System-Level Programming (SLP) in C

Development  of software in C for a uController (uC)
and an operating-system platform (Linux)
= SPiCboard learning development platform with an ATmega-uC
m Practical experience in hardware and system-level software development

Understanding of technological language and hardware basics
for the development of system-level software
m Being able to understand and assess the language C and
m Dealing with concurrency and hardware orientation
= Dealing with the abstractions of an operating system
(files, processes, ...)
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Motivation: Embedded Systems

O
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Motivation: Embedded Systems

B  Omnipresent: 98-99 percent of processors are being used in em-
bedded systems [7]
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Motivation: Embedded Systems

B  Omnipresent: 98-99 percent of processors are being used in em-
bedded systems [7]

m Cost-sensitive: 70-80 percent of all produced processors are
DSPs and pController, based on 8-bit architec-
ture or lower [7, 8]
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Motivation: Embedded Systems

B  Omnipresent: 98-99 percent of processors are being used in em-
bedded systems [7]

m Cost-sensitive: 70-80 percent of all produced processors are
DSPs and pController, based on 8-bit architec-
ture or lower [7, 8]

m Relevant: 25 percent of job offers for EE engineers do con-
tain the terms embedded or automotive  (http:
//stepstone. com)
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Motivation: Embedded Systems
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Motivation: The ATmega-uC Family (8-bit)

Type Flash SRAM IO Timer 8/16 UART SPI ADC PWM| EUR
ATTINY13 1KiB 64B 6 1/- - - 1*4 - 2,20
ATTINY2313| 2KiB 128 B 18 1/1 - 1 - - 2,99
ATMEGA48 4 KiB 512B 23 2/1 1 1 8*10 6 2,40
ATMEGA16 | 16 KiB 1024 B 32 2/1 1 1 8*10 4 6,40
ATMEGA32 | 32 KiB 2048 B 32 2/1 1 1 8*10 4 5,40
ATMEGA64 | 64 KiB 4096 B 53 2/2 2 i gy 8 -
ATMEGA128|128 KiB 4096 B 53 2/2 2 i1 @¥ig 8 119,80
ATMEGA256 | 256 KiB 8192 B 86 2/2 4 1 16*10 16 |15,50

ATmega variants (selection) and market prices (Reichelt Elektronik, April 2023)
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ATMEGA64 | 64 KiB 4096 B 53 2/2 2 i gy 8 -
ATMEGA128|128 KiB 4096 B 53 2/2 2 i1 @¥ig 8 119,80
ATMEGA256 | 256 KiB 8192 B 86 2/2 4 1 16*10 16 |15,50

ATmega variants (selection) and market prices (Reichelt Elektronik, April 2023)
B Becomes visible: resource scarcity

= Flash (storage for program code and constant data) is scarce
= RAM (storage for runtime variables) is extremely scarce
m few bytes “wasted” ~ significantly higher cost per piece
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Motivation: C as a Language

B System-level software development predominantly takes place in C.
m Why C?  (and not Python/Java/Scala/< favourite language>)
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B System-level software development predominantly takes place in C.
m Why C?  (and not Python/Java/Scala/< favourite language>)

m C stands for a multitude of important features

= Runtime efficiency (CPU)
- Translated C code runs on the processor directly
- No checks for programming errors at runtime
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= Runtime efficiency (CPU)
- Translated C code runs on the processor directly
- No checks for programming errors at runtime
m Space efficiency (storage)
- Code and data can be stored rather compact
- No checks for data access at runtime
» Immediacy (machine orientation)
- C allows for direct access to storage and registers
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Motivation: C as a Language

B System-level software development predominantly takes place in C.
m Why C?  (and not Python/Java/Scala/< favourite language>)

m C stands for a multitude of important features

= Runtime efficiency (CPU)
- Translated C code runs on the processor directly
- No checks for programming errors at runtime
m Space efficiency (storage)
- Code and data can be stored rather compact
- No checks for data access at runtime
» Immediacy (machine orientation)
- C allows for direct access to storage and registers
m Portability
- There is a C compiler for every platform
- C was "invented” (1973), to implement the OS
UNIX portable [4, 6]
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Motivation: C as a Language

B System-level software development predominantly takes place in C.
m Why C?  (and not Python/Java/Scala/< favourite language>)

m C stands for a multitude of important features

= Runtime efficiency (CPU)
- Translated C code runs on the processor directly
- No checks for programming errors at runtime

m Space efficiency (storage)

- Code and data can be stored rather compact

- No checks for data access at runtime
» Immediacy (machine orientation)

- C allows for direct access to storage and registers
m Portability

- There is a C compiler for every platform

- C was "invented” (1973), to implement the OS

UNIX portable [4, 6]

~>  Cis the lingua franca of system-level programming!
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Motivation: SLP — Syllabus and Concept

Teaching objective: system-level programming in C

m This is a really broad field: hardware programming, operating systems,
middleware, data bases, distributed systems, compiler construction, ...

» Additionally, we have the goal of learning the language C itself

Approach
= Concentration on two domains
- pC programming
- Software development for Linux system interface
m Experience contrast pC-environment <> operating system
= Concepts and techniques get teachable and tangible with the help of

various examples
= High relevance for the target audience (EE, ME, ...)
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Motivation: SLP

At the end of the lecture, everyone should be able to assess,
what a pController can (not) do,

how labor-intensive & beneficial its programming is,

what an operating system does (not) provide,

how labor-intensive & beneficial it is, to use one.

Everyone should be able to work with a computer scientist, if
necessary...
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Lecture Notes

B This handout of the lecture notes will be provided online.

s Chapters are available as individual files
m The handout contains (some) additional information

®m  However, the handout cannot be used as a substitute for

making your own notes!
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Literature Recommendations

[3] Recommended for Beginners:

Joachim Goll und Manfred Dausmann. C als erste Pro-
grammiersprache. (Als E-Book aus dem Uninetz ver-
fiigbar). Springer Vieweg, 2014. ISBN: 978-3-8348-
2271-0. URL: https://link.springer . com/book/
10.1007/978-3-8348-2271-0

[5] The “classic” (more suitabe as a reference):

Brian W. Kernighan und Dennis MacAlistair Ritchie.
The C Programming Language (2nd Edition). Engle-
wood Cliffs, NJ, USA: Prentice Hall PTR, 1988. ISBN:
978-8120305960

Programmier-
sprache

8. Auflage

THE

-
PROGRAMMING
LANGUAGE

Brian WKernighan » Dennis M.Ritchic
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