
System-Level Programming

24 Operating Systems

J. Kleinöder, D. Lohmann, V. Sieh, P. Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Summer Term 2024

http://sys.cs.fau.de/lehre/ss24

24
-B

et
rie

bs
sy

st
em

_
en

http://sys.cs.fau.de/lehre/ss24


Definition “Operating System”

DIN 44300
“... the programs of a digital computing system which, together with the
properties of the computing system, form the basis of the possible
operating modes of the digital computing system and that particularly
control and monitor the execution of programs”

Andy Tannenbaum
“... a software layer ..., that manages all parts of a system and provides
the user with an interface or virtual machine that is easier to understand
and program [than the bare hardware].”

Conclusion:
Software for managing and virtualizing the hardware components (i.e.,
resources)
Program for controlling and monitoring other programs

© klsw System-Level Programming (ST 24) 24 Operating Systems – Definition 24–1

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Overview

Formerly:

One program that

controls its environment,

alone,

started during boot,
with hardware accesses. Source: www.wikipedia.org

Now:

Multiple programs that

control their environment,

concurrently,
started/stopped dynamically,
via defined I/O functions.

© klsw System-Level Programming (ST 24) 24 Operating Systems – Micro-controller vs. OS Platform
24–2

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Multitasking

If more than one application exists on a system (“multitasking”),
the applications have to coordinate

who and when can access the/one CPU,
who can use which memory areas,
who can use which part of the disk,
who is allowed to display which part on the screen,
...

Since no application can decide on its own e. g., which areas in the
memory are still unused, shared methods and state variables are
required.
It has to be ensured that

all applications meet the agreements
(even those, that are (un)intentionally programmed erroneously!)

Hardware extensions have to restrict access to unauthorized
memory areas or I/O devices.

© klsw System-Level Programming (ST 24) 24 Operating Systems – Operating-System Kernel 24–3

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Operating System Kernel

“Shared methods and state variables”
Operating-system kernel (“kernel”, “system kernel”)

“Hardware extensions”
Levels of privilege (“rings”)
Memory protection (“memory-management unit” (“MMU”))

© klsw System-Level Programming (ST 24) 24 Operating Systems – Operating-System Kernel 24–4

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Layer Model

Definition “operating
system”:

Operating system:
Kernel and auxiliary
programs

or

Operating system:
Only the kernel

© klsw System-Level Programming (ST 24) 24 Operating Systems – Operating-System Kernel 24–5

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Levels of Privilege

Unprivileged layers (“application layer”, “user layer”, “user ring”)
may execute “normal” CPU instructions
may access its assigned memory areas
may call OS functions

Privileged layer (“system layer”, “kernel layer”, “ring 0”)
may execute all CPU instructions
may access every memory area
may reconfigure the memory protection
may access I/O devices

Switch to privileged layer by

System calls or traps

Interrupts

Exceptions

© klsw System-Level Programming (ST 24) 24 Operating Systems – Operating-System Kernel 24–6

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



System Calls

Example: Application needs more memory
Step by step:

Application calculates how much more memory is needed,

Stores parameter in CPU registers,

Switches in the kernel with a special CPU instruction,
(⇒ from now on privileged!)

Reads parameters from the CPU register,

Reserves more memory for itself,

Reprograms the MMU,

Stores the result in CPU registers,

Switches back to the application layer with special CPU instructions,
(⇒ from no on unprivileged again!)

Retrieves result from the CPU register.

© klsw System-Level Programming (ST 24) 24 Operating Systems – Operating-System Kernel 24–7

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Management of Resources

Responsibilities of the operating-system kernel

multiplexing of resources for
multiple users or applications

creating protections

providing abstractions for easier
handling of resources

Enable a coordinated shared usage of resources,
which can be classified:

active, timely divisible (processor)
passive, only exclusively usable (peripheral devices, e. g., printers, etc.)
passive, spatially divisible (memory, disk space, etc.)

Support for recovering from errors (segmentation fault)

© klsw System-Level Programming (ST 24) 24 Operating Systems – Management of Resources 24–8

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Classification of Operating Systems

Different criteria of classification
target platform
intended use
functionality

© klsw System-Level Programming (ST 24) 24 Operating Systems – Classification of Operating Systems
24–9

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Classification of Operating Systems (2)

Compared to only a small number of “general purpose”-, mainframe-
and high-performance computer operating systems, there exits a
multitude of small and smallest specialized operating systems:

C51, C166, C251, CMX RTOS, C-Smart/Raven, eCos, eRTOS,

Embos, Ercos, Euros Plus, Hi Ross, Hynet-OS, LynxOS,

MicroX/OS-II, Nucleus, OS-9, OSE, OSEK Flex, OSEK Turbo,

OSEK Plus, OSEKtime, Pricise/MQX, Pricise/RTCS, proOSEK,

SOS, PXROS, QNX, Realos, RTMOSxx, Real Time Architect,

ThreadX, RTA, RTX51, RTX251, RTX166, RTXC, Softune,

SSXS RTOS, VRTX, VxWorks, ...

Usage: embedded systems, often real-time systems, more than 50%
proprietary (in-house) solutions

Alternative classification: by architecture

© klsw System-Level Programming (ST 24) 24 Operating Systems – Classification of Operating Systems
24–10

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Architecture of Operating Systems

Scope: tens of thousands or even millions of lines of code
⇒ structuring required
Various structural concepts

runtime libraries (minimal, mostly used for embedded systems)
monolithic systems
layered systems
microkernels (minimal kernels)

Various protection concepts
no protection
protection of the operating system
protection of the operating system and between applications
fine-grained protection within application

© klsw System-Level Programming (ST 24) 24 Operating Systems – Architecture of Operating Systems
24–11

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en



Components of Operating Systems

Memory management
Who is allowed to store information in memory?

Process management
When is which task scheduled?

File system
storage and protection of long-term data

Inter-process communication (IPC)
communication between different applications or between executed
parts (running in parallel) of an application

Input/Output
communication with the “world outside” (user/computer)

© klsw System-Level Programming (ST 24) 24 Operating Systems – Components of Operating Systems
24–12

24
-B

et
rie

bs
sy

st
em

_
en

24
-B

et
rie

bs
sy

st
em

_
en


	24 Operating Systems 
	Definition 
	Micro-controller vs. OS Platform 
	Operating-System Kernel 
	Management of Resources 
	Classification of Operating Systems 
	Architecture of Operating Systems 
	Components of Operating Systems 


