27-Prozesse _en

O

System-Level Programming

27 Programs and Processes

J. Kleinoder, D. Lohmann, V. Sieh, P. Wagemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

Summer Term 2024

http://sys.cs.fau.de/lehre/ss24

http://sys.cs.fau.de/lehre/ss24

27-Prozesse _en

Overview

Multiple Programs that

run concurrently,

are dynamically started/stopped
control their environment

via defined 1/0 functions.

Source: www.wikipedia.org

Each running program gets hardware assigned:
m CPU (time shares)
B memory (parts of the main memory)

and can call operating-system—kernel functions.

O © klsw System-Level Programming (ST 24) 27 Programs and Processes — Overview 27-1

27-Prozesse _en

Definitions

Program: set of instructions
Process: running program and its data

Hint: one program can be in execution multiple times (e.g., PDF
viewer)!

O © klsw System-Level Programming (ST 24) 27 Programs and Processes — Processes

27-2

27-Prozesse _en

Processes

B Definition “process”: running program with its data

m Different point of view:

O

microcontroller process || UNIX-/Windows/... process

processor || time shares of the physical processor
memory || virtual memory
interrupts || signals
I/O devices || 1/O operating-system functions

© klsw

System-Level Programming (ST 24)

27 Programs and Processes — Processes 27-3

Processes (2)

B Multi-program operation (“multitasking”)

m multiple processes can be executed virtually simultaneously

m if there are less processors then there are running processes, time shares
for using a processor are distributed to the processes: time-sharing
system

m the decision, which process receives how much computing time is up to
the OS kernel: scheduling

m the switch between processes takes place by the OS kernel: dispatching

m running processes do not know at which point a subsequent process is
dispatched

27-Prozesse _en

O © klsw System-Level Programming (ST 24) 27 Programs and Processes — Processes 27-4

27-Prozesse _en

Process States

A process is always in one of the following states

New (or created):
Process has been created but does not have all necessary
resources to run

Ready:
Process has all necessary resources (except CPU) and is ready for
execution/running

Running:
Process is executed by a physical processor

Waiting (or blocked):
Process waits for an event (completion of an |/O operation)

Terminated:
Process is terminated but not all of its resources are yet freed

O © klsw System-Level Programming (ST 24) 27 Programs and Processes — Processes 27-5

27-Prozesse _en

Process States (2)

m State diagram with transitions:

scheduler assigns processor

New/Created

admitted

interrupt

Waiting/Blocked

blocking condition ends blocking call

Terminated

exit call

O © klsw System-Level Programming (ST 24) 27 Programs and Processes — Processes

27-6

27-Prozesse _en

Context Switch

m FEach process has a context (also state)
m contents of processor registers
m contents of memory areas
m open files, current directory, ...

®m When switching a process (context switch)

the contents of the processor registers are saved,

a new process is selected,

the execution environment for the new process is established
- reprogramming of the MMU

- change of the open files and current working directory, ...

the stored registers of the new process are loaded.

O © klsw System-Level Programming (ST 24) 27 Programs and Processes — Processes 277

27-Prozesse _en

O

Context Switch

Procedure of two processes in user mode

and kernel while switching

blocked/ready _r|_ blocked/ready

Process A
s £ Aploghetiieady S NN I .
§ 'g__') Process B
=] o o Q.
=3 cl® 2 g 1 c s
- = S 5E - =
= =i = 3 = 2
= - £
o £ o E 25
oo xo £
S |
System call
with switching Context P. B
Dispatcher Dispatcher Context P.A
System call
without switching operating system

© klsw System-Level Programming (ST 24) 27 Programs and

Processes — Processes 27-8

27-Prozesse _en

Process Control Block

m Process Control Block (PCB)

Data structure of the kernel that contains all necessary data for a

process.

Example UNIX:

= process ID (PID)

m process state (running, ready, ...)
m register

= memory mapping

= owner (UID, GID)

= root directory, working directory
m open files

I

O © klsw System-Level Programming (ST 24) 27 Programs and Processes — Processes 27-9

	27 Programs and Processes
	Overview
	Processes

