
Exam „System-Level Programming“ April 3, 2025

Problem 1: (14 Points)

For the single-choice questions in this problem, only one correct answer must be clearly marked
with a cross. The correct answer is awarded the indicated number of points.

If you want to correct an answer, please cross out the incorrect answer with three horizontal lines
(⊠) and mark the correct answer with a cross.

Read the question carefully before you answer.

2 Pointsa) The following program code is given:

int32_t x[] = {-1, 7, -3, 5};
int32_t *y = &x[3];
y -= 2;

What value does the dereferencing of y (i.e. *y) return after the program code has
been executed?

□ An error occurs at runtime.

□ 3

□ -5

□ 7

2 Pointsb) The following macro definition can be found in the AVR library:

#define PINA (*(volatile uint8_t *)0x39)

Which of the following statements regarding the use of the volatile keyword is
correct in this case?

□ The volatile keyword ensures that access to PINA is synchronized with
interrupts.

□ The volatile keyword enables safe access to individual bits of the register.

□ The keyword volatile allows the compiler to perform better optimizations.

□ If port A is configured as an input, the value of PINA could change at any time.
volatile instructs the compiler to always read the current value from PINA.

2 Pointsc) The following program code is given:

#define SUB(a,b) a-b
#define ADD(a,b) a+b

What is the result of the following expression: 2 * SUB(2, ADD(3, 4))

□ -10

□ 5

□ -3

□ 6

- 1 of 18 -

Exam „System-Level Programming“ April 3, 2025

2 Pointsd) The following enumeration is given:

enum SPRACHE {Java, Python, C};

Which of the following statements is correct?

□ The value of C is unknown; the compiler assigns a random but unique value to
each enum element at compile time.

□ The compiler reports an error because no value has been assigned to the enum
elements.

□ The value of C is 3.

□ The value of C is 2.

2 Pointse) What is the purpose of the #ifdef construct in C?

□ It can be used to ensure that a program section returns a defined result.

□ It can be used to hide parts of the program during translation

□ It checks whether the variables specified afterwards have been defined.

□ It can be used as an alternative to if statements.

2 Pointsf) Given the following C program snippet that uses a variable foo of type uint8_t:

foo &= ~0xaa;
foo ^= 0xaa;

Which statement about foo is correct after executing the statements?

□ The least significant bit in foo is 1.

□ The most significant bit in foo is 1.

□ No statement can be made about the state of the most significant bit of foo.

□ The first two characters in the string foo are "aa".

2 Pointsg) In which of the following situations is a running process transferred to the blocked
state?

□ The scheduler dispatches the process to another CPU.

□ A child process of the process terminates.

□ The process is reading a file and the corresponding data block is not yet available
in main memory.

□ The operating system cannot transfer a running process to the blocked state
because the process would otherwise trigger a trap.

- 2 of 18 -

Exam „System-Level Programming“ April 3, 2025

Problem 2: Boardtest (30 Points)

You may detach this page for a better overview during programming!

Implement the test program for the SPiCBoard. To test
the individual functionalities, the program should be able
to switch between three different test modes (see enum
Mode) using BUTTON0: In TEST_POTI mode, the number
of switched-on LEDs is determined by the potentiome-
ter. In TEST_PHOTO mode, the number of switched-on
LEDs shows the ambient brightness. In TEST_SEG mode,
the seven-segment display should count down repeatedly
from 99 to 0.

The program works in detail as follows:

– Initialize the hardware in the function void init(void). Do not make any assumptions
about the initial state of the hardware registers.

– The input PD2 (interrupt 0) is connected to the button. A falling edge occurs exactly when
the button is pressed and a rising edge occurs when it is released again. You can assume that
the button is not pressed.

– When the button is pressed, the registered ISR(INT0_vect) signals the corresponding event
to the main function using a module-local variable. The next test mode is selected according
to the sequence in enum. After the last test mode, the first mode is started again. All test-
related state is reset with each mode transition: Deactivating the seven-segment display using
sb_7seg_disable(void), switching off the LEDs using sb_led_setMask(uint8_t),
. . .

– An 8-bit timer should be used for timing. Configure the most resource-efficient prescaler and
trigger an event once per millisecond. You will find details on the next page.

– If the configured count value of the timer is reached, only the event should be signaled
in ISR(TIMER0_OVF_vect) using a module-local variable. The internal counter of the
elapsed milliseconds should then be incremented in the main function.

– For the test modes TEST_POTI and TEST_PHOTO, the respective ADC device (POTI or
PHOTO) is to be read using sb_adc_read. The 8 most-significant bits of the read 10-bit
integer value are then to be interpreted as an unsigned 8-bit value. The provided function
sb_led_showLevel is used to switch on the number of LEDs corresponding to this value.

– For the test mode TEST_SEG, the seven-segment display should count down repeatedly
from 99 to 0. Wait 500ms between the individual calls of sb_7seg_showNumber. Use an
internal counter value for this, which is incremented every millisecond.

– Do not use any button/timer functionality of the libspicboard (button.h/timer.h).

– Do not use floating point numbers or other math library functions.

– Make sure that the microcontroller is in sleep mode as often as possible.

- 3 of 18 -

Exam „System-Level Programming“ April 3, 2025

Information about the hardware

You may detach this page for a better overview during programming!

Button: interrupt line to PORTD, pin 2
– Falling edge: button is pressed
– Rising edge: button is released
– Configure pin as input: corresponding bit in the DDRD register to 0
– Activate internal pull-up resistor: corresponding bit in the PORTD register to 1
– External interrupt source INT0, ISR vector macro: INT0_vect
– Activating/deactivating the interrupt source is done by setting/clearing the INT0 bit in the
EIMSK register

Configuration of the external interrupt source INT0 (bits in EICRA register)

interrupt 0
description

ISC01 ISC00
0 0 interrupt on low level
0 1 interrupt on either edge
1 0 interrupt on falling edge
1 1 interrupt on rising edge

Timer (8-bit): TIMER0
– The overflow interruption is to be used (ISR vector macro: TIMER0_OVF_vect)
– The most resource-efficient prescaler (prescaler) is 64, which causes the 8-bit counter TCNT0

to overflow every 1ms at the 16ṀHz CPU clock (sufficiently accurate).
– Activating/deactivating the interrupt source is done by setting/clearing the TOIE0 bit in the

register TIMSK0

Configuration of the frequency of the timer TIMER0 (bits in register TCCR0B)

CS02 CS01 CS00 description
0 0 0 timer off
0 0 1 CPU clock
0 1 0 CPU clock / 8
0 1 1 CPU clock / 64
1 0 0 CPU clock / 256
1 0 1 CPU clock / 1024
1 1 0 Ext. clock (falling edge)
1 1 1 Ext. clock (rising edge)

- 4 of 18 -

Exam „System-Level Programming“ April 3, 2025

Complete the following code skeleton so that a fully compilable program is created.

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>
#include <stdint.h>
#include <adc.h>
#include <led.h>
#include <7seg.h>

enum Mode { TEST_POTI = 0, TEST_PHOTO = 1, TEST_SEG = 2 };

// Allows the array of LEDs to be used as a (fill) level, progress, or
// similar indicator. The 8 LEDs are used to display the current level
// as a ratio of the maximum value (<=255) in 9 steps.
//
// level: the current level to be shown
// max: the maximum possible value for level
extern int8_t sb_led_showLevel(uint8_t level, uint8_t max);

// Function Declarations, Global Variables, etc.

// End Function Declarations, Global Variables, etc.

// Interrupt Service Routines

// ISRs **must** only set an event variable

// End Interrupt Service Routines D:

- 5 of 18 -

Exam „System-Level Programming“ April 3, 2025

// Function main

// Initialization and Local Varibables

// Event Loop

- 6 of 18 -

Exam „System-Level Programming“ April 3, 2025

// Processing of Button Event

// Processing of Timer Event

- 7 of 18 -

Exam „System-Level Programming“ April 3, 2025

// Test required Mode

// End main M:

- 8 of 18 -

Exam „System-Level Programming“ April 3, 2025

// Initialization Function

// End Initialization Function I:

- 9 of 18 -

Exam „System-Level Programming“ April 3, 2025

Problem 3: SMS (19 Points)

To ensure smooth SLP-exercise operation, its submission system is continuously monitored. To
be notified even in the event of an Internet failure, serious problems are reported by SMS (Short
Message Service). Implement a program sms that reads in a telephone number and text message
via the standard input and then sends it.

$./sms
Enter phone number:
091318527276
Enter SMS:
i4spic.cs.fau.de is broken...

– The program initially opens the file /sys/sms/spool (see OUTPUT_FILE) for writing.

– If the file is opened successfully, the prompt "Enter Phone Number:\n" appears on the
standard output and the phone number is read from the standard input. The maximum length
of a telephone number is LEN_NUM characters (excluding the final ’\n’ and ’\0’).

– The external function sanitize (see declaration on following page) is used to check whether
the maximum character length has been exceeded. The processed string always ends with
a ’\0’ byte. The function int check_phone_number(const char*) implemented by
you is be used to check whether only valid digits (’0’ - ’9’) have been transferred. If one
of the two checks fails (return value: -1), the program exits with an error message. In the
case of success, check_phone_number returns 0.

– The input phone number is then written to file in the format "{{{ <number> }}}\n".

– The text of the short message should be processed after the prompt "Enter SMS:". The
maximum length of an SMS is LEN_SMS characters (excluding the final ’\0’). Read the
message text in a loop from the standard input and check repeatedly using sanitize
whether the maximum character length has been exceeded. Write the read text in the format
"{{{ <text> }}}\n" to the opened file. If this limit has been exceeded, continue with
the loop. Otherwise, use EXIT_SUCCESS to signal successful program execution.

Ensure correct error handling of the functions used. Error messages should generally be sent to
stderr.

- 10 of 18 -

Exam „System-Level Programming“ April 3, 2025

Complete the following code skeleton so that a fully compilable program is created.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define LEN_NUM 12
#define LEN_SMS 160

const char OUTPUT_FILE[] = "/sys/sms/spool";

// Sanitize input string before processing.
//
// Removes trailing newlines, escapes all special meaning characters,
// and checks for valid input length. Upon successful completion,
// sanitize returns 0. If input is too short (e.g., "") or
// too long (see max_input_len), -1 is returned.
//
// The processed string will always end with a ’\0’ byte.
extern int sanitize(const char *input, size_t max_input_len);

static void die(const char message[]) {
perror(message);
exit(EXIT_FAILURE);

}

static void err(const char message[]) {
fprintf(stderr, "%s\n", message, stderr);
exit(EXIT_FAILURE);

}

// Function check_phone_number

B:

- 11 of 18 -

Exam „System-Level Programming“ April 3, 2025

// Function main

// Open OUTPUT_FILE for writing

// Read phone number from stdin

// Check validity of phone number

// Write phone number to OUTPUT_FILE

- 12 of 18 -

Exam „System-Level Programming“ April 3, 2025

// Read sms from stdin

// Check validity of sms text

M:

- 13 of 18 -

Exam „System-Level Programming“ April 3, 2025

Problem 4: Concurrency (8 Points)

a) Consider the following code snippet. Describe the lost-update problem using the given example!
(4 Points)

1 static volatile uint8_t counter = 0;
2 ISR(INT0_vect) {
3 counter++;
4 }
5
6 void main(void) {
7 while(1) {
8 if(counter > 0) {
9 counter--;

10 // Process key press
11 ...
12 }
13 ...
14 }
15 }

You will find the next subexercise on the following page!

- 14 of 18 -

Exam „System-Level Programming“ April 3, 2025

b) Consider the following code snippet. Describe the lost-wakeup problem and its consequences
using the given example! (3 Points)

1 ISR(TIMER1_COMPA_vect) {
2 event = 1;
3 }
4
5 void main(void) {
6 sleep_enable();
7 event = 0;
8 while(!event) {
9 sleep_cpu();

10 }
11 sleep_disable();

c) Describe hwo the lost-update/lost-wakeup problem in these examples can be solved! (1 Point)

- 15 of 18 -

Exam „System-Level Programming“ April 3, 2025

Problem 5: Memory Organisation (12 Points)

The following descriptions should be short and concise (keywords, short sentences).

a) The following program is executed on an 8-bit AVR/ATmega32 microcontroller.
Complete the properties of the named variables and expressions in the table on the next page. (6
Points)

static const char *text = "C i5 c00l";
const uint8_t BUFFER_SIZE = 3;

static volatile uint8_t move_text;

static void move_text_timer_callback(void) {
move_text = 1;

}

void main(void) {
sei();
static uint8_t time = 400;

sb_timer_setAlarm(
move_text_timer_callback,
time, time

);

const char *text_start = text;
move_text = 1;

while(42) {
if(move_text){

move_text = 0;
if((*text_start) == ’\0’) {

text_start = text;
}

char buffer[BUFFER_SIZE];
buffer[0] = text_start[0];
buffer[1] = text_start[1];
buffer[2] = ’\0’;

text_start++;
}
...

}
}

- 16 of 18 -

Exam „System-Level Programming“ April 3, 2025

Variable Scope Lifespan Section
Memory consumption

in bytes
text module .data

BUFFER_SIZE program program

move_text program .bss 1

time 1

text_start stack 2

buffer end of block end of block

b) When does static and when does dynamic allocation take place? Assign the memory sections
mentioned above accordingly. What is the relationship with regard to the lifetime of the variables?
(6 Points)

- 17 of 18 -

Exam „System-Level Programming“ April 3, 2025

Problem 6: Filesystems (7 Points)

A file system enables the structured storage of data. A directory tree is shown below. Directories
and files are marked with a labeled rectangle, a link with a labeled arrow.

Root
Directory

2

Directory

6

Directory

13

Directory

25

Directory

15

File
ELF

77

File
libled

50

File
traffic light

68

stud

bin

dev

me led.c

tra.c

sh

Complete the associated, simplified management information. Use the scheme already provided as
a reference. Enter also the entries for . and ...

Root Directory

13 .

2 ..

77 sh

13

bin dev stud me

File
ELF

77

File
libled

50

File
traffic light

68

Inode of
Directory

Inode and
Name of Entry

Inode of File

File Content

- 18 of 18 -

