04-Abstraktion _en

O

System-Level Programming

4 Software Layers and Abstraction

J. Kleinoder, D. Lohmann, V. Sieh, P. Wagemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

Summer Term 2024

http://sys.cs.fau.de/lehre/ss24

http://sys.cs.fau.de/lehre/ss24

04-Abstraktion _en

< ' ~&— SulydeW 01 3SoPD

close to problem = |

Abstraction by Software Layers: SPiCboard

Hardware view

LED H Button ‘

8

L T

SPiCboard

«abstract»
ATmega

A

1

’ ATmega32 ‘ ’ ATmega64 ‘

© klsw

System-Level Programming (ST 24)

4 Software Layers and Abstraction — Libraries

4-1

04-Abstraktion _en

(’ ~— duIydeW 03 9S0[D

close to problem = |

Abstraction by Software Layers: SPiCboard

Hardware view = Software layers

LED H Button ‘

8

LT

SPiCboard

«abstract»
ATmega

A

[1

‘ ATmega32 ‘ ‘ ATmega64 ‘

ATmega ATmegab4
Register, ... Register, .. Register, ...

© klsw

System-Level Programming (ST 24)

4 Software Layers and Abstraction — Libraries

4-1

04-Abstraktion _en

‘ i ~¢— 2uIydew 01 3502

close to problem = |

Abstraction by Software Layers: SPiCboard

Hardware view = Software layers

LED H Button ‘

8

LT

SPiCboard

¢

«abstract»
ATmega

A

[1

| ATmega32 | | ATmega64 |

ATmega ATmegab4
Register, ... Register, .. Register, .

© klsw

System-Level Programming (ST 24)

4 Software Layers and Abstraction — Libraries

4-1

04-Abstraktion _en

‘ i ~¢— 2uIydeW 01 3502

close to problem = |

Abstraction by Software Layers: LED — on Compared

Goal: Switch on LED REDO on the l | |

SPiCboard: oo ATmegacA =
° Register, . Register, . Register,

© klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Libraries

4-2

‘ i ~¢— 2uIydew 01 3502

close to problem = |

Abstraction by Software Layers: LED — on Compared

Program only runs on ATmega32. It uses
register addresses specific to the ATme-

ga32 (like 6x12) and characteristics: . =
i;iunsigned charx) (0x11)) |= (1<<7);

(*(unsigned charx) (0x12)) &= ~(1<<7);

Goal: Switch on LED REDO on the

SPiCboard: Almega ATmegac4
° Register, .. Register, . Register,

© klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Libraries

4-2

04-Abstraktion _en

(’ ~— duIydeW 03 9S0[D

close to problem = |

Abstraction by Software Layers: LED — on Compared

Program runs on each n.C of the ATmega-series. It
uses symbolic register names of the avr-libc (like
PORTD) and general characteristics:

#include <avr/io.h>
DDRD |= (1<<7);
PORTD &= ~(1<<7);

Program only runs on ATmega32. It uses
register addresses specific to the ATme-
ga32 (like 6x12) and characteristics
(*(unsigned charx) (0x11)) |= (1<<7);

Goal: Switch on LED REDO on the l | |

(*(unsigned charx) (0x12)) &= ~(1<<7)
SPiCboard: mega ATmegac4
° Regllel Register, . Reqw\er

© klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Libraries 4-2

04-Abstraktion _en

(’ ~— duIydeW 03 9S0[D

close to problem = |

Abstraction by Software Layers: LED — on Compared

Program only runs on the SPiCboard. It uses functions (like
sb_led_on()) and constants (like RED®) of the libspicboard
that represent concrete wiring of LEDs, buttons, etc. with the
nC:

#include <led.h>

sb_led_on(REDO) ;

Program runs on each n.C of the ATmega-series. It
uses symbolic register names of the avr-libc (like
PORTD) and general characteristics:

#include <avr/io.h>

DDRD |= (1<<7);
PORTD &= ~(1<<7);

Program only runs on ATmega32. It uses
register addresses specific to the ATme-
ga32 (like 6x12) and characteristics:

i;iunsigned charx) (0x11)) |= (1<<7);
(*(unsigned charx) (0x12)) &= ~(1<<7);

Goal: Switch on LED REDO on the

SPiCboard: Almeg ATmegab4 ce
° Register, .. Register, . Register,

© klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Libraries 4-2

04-Abstraktion _en

Abstraction by Software Layers: Complete Example

Until now: development with avr-libc

#include <avr/io.h>

void main(void) {
// initialize hardware

// button® on PD2
DDRD &= ~(1 << 2);

PORTD [= (1 << 2);
// LED on PD6
DDRD |= (1 << 6);

PORTD |= (1 << 6);

// wait until PD2: low --> (button® pressed)
while ((PIND >> 2) & 1) {

}

// greet user (red LED)

PORTD &= ~(1 << 6); // PD6: low --> LED is on
// wait forever

while (1) {
}

(ref. < [-12])

Now: development with
libspicboard

#include <led.h>
#include <button.h>

void main(void) {

// wait until Button@ is pressed
while (sb_button_getState(BUTTONO)

!= PRESSED) {
}

// greet user
sb_led_on(REDO) ;

// wait forever
while (1) {
}

O © klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Libraries 4-3

Abstraction by Software Layers: Complete Example

Until now: development with avr-libc

#include <avr/io.h>

void main(void) {
// initialize hardware

// button® on PD2

DDRD &= ~(1 << 2);
PORTD |= (1 << 2);
// LED on PD6

DDRD |= (1 << 6);

PORTD |= (1 << 6);

// wait until PD2: low --> (button® pressed)
while ((PIND >> 2) & 1) {

}

// greet user (red LED)

PORTD &= ~(1 << 6); // PD6: low --> LED is on
// wait forever

while (1) {
}

(ref. < [-12])

Now: development with
libspicboard

#include <led.h>
#include <button.h>

void main(void) {

// wait until ButtonO is pressed
while (sb_button_getState(BUTTONO)

!= PRESSED) {
}

// greet user
sb_led_on(REDO) ;

// wait forever
while (1) {
}

Hardware initialisation not needed anymore
Program simpler to understand due to
problem-specific abstraction
- setting bit 6 in PORTD

— sh_led_on(REDO)
- reading bit 2 in PORTD

— sb_button_getState(BUTTONO)

O © klsw System-Level Programming (ST 24)

4 Software Layers and Abstraction

— Libraries 4-3

04-Abstraktion _en

Abstraction of the libspicboard: Short Overview

m Output abstractions (selection)
= LED module (#include <led.h>)

Bo
- switch LED on: sb_led_on(BLUEQ) ~
- switch LED off: sb_led_off(BLUE®) ~
- switching all LEDs on or off: 01 2 3
sb_led_setMask(0x0f) ~ @99
m 7 segment module (#include <7seg.h>)
- showing an integer n € {—9...99}:
sb_7seg_showNumber(47) ~
B Input abstractions (selection)
= Button module (#include <button.h>)
- reading the button state:
sb_button_getState (BUTTONO) > BUTTONSTATE_{PRESSED, RELEASED}
m ADC module (#include <adc.h>)
- reading the value of the potentiometer:
sb_adc_read(POTI) — {0...1023}

O © klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Libraries

4-4

04-Abstraktion _en

< ' ~€— suIydeW 01 3o

close to problem =—p |

Software Layers in General

Discrepancy: application problem <— hardware processes

CAD-System
. Java program | | Class libraries |

Translation | .

| Java Byte-Code |

Interpretation &

Graphics workstation

JVM

Translation

Translation

Execution Interpretation of system calls

C program

Goal: executable machine code

© klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Generalisation 4-5

04-Abstraktion__en

The Role of the Operating System

m User view: Environment for starting, controlling and

combining of applications
= Shell, graphical user interface
- e.g., bash, Windows
= Communication between applications and users
- e.g., with files

m Application view: Function libraries with abstraction for easier

software development
= Generic in-/output of data
- e.g., on printers, serial interfaces, in files
m Permanent storage and transfer of data
- e.g., by the file system, over TCP/IP sockets
m Management of memory and other resources
- e.g., CPU time

O © klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Generalisation

46

04-Abstraktion _en

The Role of the Operating System (contineq)

System view: Software layers for multiplexing of the
hardware (< multi-user mode)
m Parallel handling of program instances with process concepts

- virtual memory < own 32-/64-bit address space
— virtual processor — scheduled/preempted transparently
- virtual in/output devices < can be piped in files, sockets, ...

m Isolation of program instances with process concepts
- automatic garbage collection at the end of process life
- detection/prevention of memory access to other processes
= Partial protection from critical programming errors
- detection of some invalid memory accesses (e.g., access to address 0)
- detection of some invalid operations (e.g., div/0)

1C programming without operating system platform ~ no protection
m Operating system protects programmer less from bugs compared to e. g., Java.
m For the uC programming, we even have to give up this protection.

= 8/16-bit uC often have no hardware support for protection.

O © klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Generalisation 4-7

04-Abstraktion__en

Example: Error Detection by the Operating System

Linux: Division by 0 SPiCboard: Division by 0
1 #include <stdio.h> #include <7seg.h>
2 #include <avr/interrupt.h>
3
4 int main(int argc, char xxargv) { void main(void) {
5 int a = 23; int a = 23;
6 int b; int b;
7 sei();
8 b = 4711 / (a - 23); b = 4711 / (a - 23);
9 printf("Result: %d\n", b); sb_7seg_showNumber(b) ;
10
11 return 0; while (1) {}
12 } }
Compilation and execution yields: Execution yields:

gcc error-linux.c -o error-linux
./error-linux

~ Program continues
Floating point exception ” computation

~» program gets terminated. with wrong data.

O © klsw System-Level Programming (ST 24) 4 Software Layers and Abstraction — Generalisation 4-8

	4 Software Layers and Abstraction
	Libraries
	Generalisation

