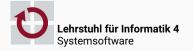
Verteilte Systeme – Übung


Zeit in verteilten Systemen

Sommersemester 2025

Harald Böhm, Christian Berger, Tobias Distler

Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Informatik 4 (Systemsoftware)

https://sys.cs.fau.de

Friedrich-Alexander-Universität Technische Fakultät

Überblick

Zeit in verteilten Systemen

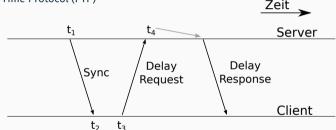
- Echtzeit-basierte Uhren
- Logische Uhren

Zeit in verteilten Systemen

- Ist Ereignis A auf Knoten X passiert, bevor Ereignis B auf Knoten Y passiert ist?
 Beispiele: Internet-Auktionen, Industriesteuerungen, ...
- Prinzipiell keine konsistente Sicht auf Gesamtsystem möglich
 - Unabhängigkeit von Ereignissen
 - Informationsaustausch mit Latenzen verbunden
 - \Rightarrow Nur näherungsweise Lösungen möglich
- Bestes Verfahren abhängig von Einsatzgebiet und notwendigen Eigenschaften

1

Zeit in verteilten Systemen


Echtzeit-basierte Uhren

Echtzeit-basierte Uhren

- Nutzung eines gemeinsamen Zeitsignals
 - Auflösung beschränkt
 - Schwierig über größere Entfernungen
 - ightarrow Ausbreitungsgeschwindigkeit: max. $30\,\mathrm{cm/ns}$
- Nachrichten mit Zeitstempel lokaler, physikalischer Uhren versehen
 - Wenig Kommunikationsaufwand
 - Ohne Synchronisation: Zunehmende Abweichungen
- Kombination verschiedener Verfahren zur Verbesserung der Genauigkeit

Synchronisation von Echtzeituhren: NTP, PTP

- Stellen lokaler Uhr basierend auf Referenzuhr
- In der Praxis verwendete Protokolle:
 - Network Time Protocol (NTP)
 - Precision Time Protocol (PTP)

- Berechnung von Umlaufzeit & Verzögerung anhand von Zeitstempel
- Annahmen: Laufzeiten symmetrisch und stabil
- lacksquare Genauigkeit über Internet in der Größenordnung $10\,\mathrm{ms}$

White Rabbit im CNGS-Experiment

- Messung von Neutrino-Flugzeit zwischen CERN und LNGS (732 km)
- Möglichst genaue Zeitsynchronisation zwischen Standorten
- White Rabbit: Kombination verschiedener Techniken
 - Synchronous Ethernet über Glasfaser
 - Atomuhren als Taktgeber
 - Precision Time Protocol (PTP) mit Hardware-Unterstützung
 - Global Positioning System (GPS)
- Ausgleich von Temperaturschwankungen durch ständige Phasen-Messung
- Genauigkeit: 0.5 ns, Präzision: 10 ps (5 km Teststrecke)

M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez.

White Rabbit: a PTP Application for Robust Sub-nanosecond Synchronization.

2011 International IEEE Symposium on Precision Clock Synchronization for Measurement Control and Communication (ISPCS '11), p. 25–30, September 2011.

Zeit in verteilten Systemen

Logische Uhren

Logische Uhren

Grundidee

Kausale Zusammenhänge entstehen durch gegenseitige Beeinflussung, d. h.

Nachrichtenaustausch in verteiltem System

Modell

Kommunizierende Prozesse P_i versehen Ereignisse a mit logischem Zeitstempel $C_i\langle a \rangle$

Uhrenbedingung

Wenn Ereignis b aufgrund von a aufgetreten ist $(a \to b)$, muss die Relation $C_i\langle a \rangle < C_j\langle b \rangle$ gelten

- Eigenschaften: transitiv, asymmetrisch ⇒ Striktordnung
 - ightarrow Umkehrschluss **nicht** möglich: Aus $C_i\langle a \rangle < C_j\langle b \rangle$ folgt nicht a
 ightarrow b!
- Erweiterte Ansätze können zusätzliche Eigenschaften garantieren
 - Totalordnung
 - Zuverlässige Unterscheidung abhängiger Ereignisse (ightarrow Vektoruhr)

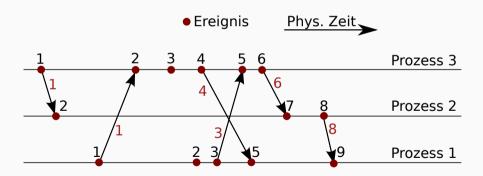
5

Uhrenbedingung von Lamport

- Uhrenbedingung im Kontext von kommunizierenden Prozessen
 - Aufeinanderfolgende Ereignisse innerhalb eines Prozesses erhalten streng monoton steigende Zeitstempel
 - 2. Senden einer Nachricht muss vor deren Empfang passiert sein, daher muss gelten:

$$C_i\langle Senden \rangle < C_j\langle Empfang \rangle$$

- Regeln für Implementierung
 - 1. Die logische Uhr C_i eines Prozesses P_i muss zwischen zwei aufeinanderfolgenden Ereignissen immer inkrementiert werden
 - 2. Erhält ein Prozess P_j eine Nachricht und deren Zeitstempel $C_i\langle Senden \rangle$ ist größer oder gleich dem Wert der Uhr C_j des Prozesses P_j , muss die Uhr auf einen Wert größer $C_i\langle Senden \rangle$ erhöht werden


Leslie Lamport.

Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM, 21:558–565, July 1978.

Uhrenbedingung von Lamport

- Kein genereller Zusammenhang mit Ablauf physikalischer Zeit
 - Kein gleichmäßiger Verlauf
 - Folge von Ereignissen nach logischer Zeit nicht zwangsläufig identisch mit physikalischem Auftreten

Lamport-Uhr: Erweiterungen

- Für viele Anwendungen Totalordnung wünschenswert
 - Wenn Zeitstempel $C_i\langle a\rangle$ und $C_i\langle b\rangle$ gleich, gilt weder $C_i\langle a\rangle < C_i\langle b\rangle$, noch $C_i\langle b\rangle < C_i\langle a\rangle$
 - Beliebiges determiniertes Verfahren zur Festlegung möglich
 - Am einfachsten: Global eindeutige Prozess-ID entscheidet
 - Keine Beeinflussung der Aussage bezüglich kausaler Zusammenhänge
- Implementierung von Relationen in Java mittels Comparable

```
public interface Comparable<T> {
  public int compareTo(T obj);
}
```

■ Methode compareTo() liefert Zahl abhängig von Relation

```
Negativ : this < obj
"Null" : this = obj, entspricht equals()
Positiv : this > obj
```