
ARM Confidential Compute Architecture
A New Model of Trusted Execution Environment On The ARM Architecture

Johannes Weidner
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany
johannes.weidner@fau.de

ABSTRACT
ARM Confidential Compute Architecture extends the Arm architec-
ture by a new Trusted Execution Environment called realm. A realm
is dynamically managed by untrusted software, but preserves the
confidentiality and integrity of its contents through a combination
of hardware and software mechanisms. This paper shall provide an
overview over this new architecture and its functionality.

KEYWORDS
ARM CCA, Trusted Execution, Realm

1 INTRODUCTION
Nowadays cloud computing plays an important role enabling the
on-demand use of distributed computation resources. Lots of compa-
nies like Amazon, Google or Microsoft offer cloud-services, the use
of those services require however to trust the service provider. This
means on the one hand rely on the security measures of the provider
against attackers, but on the other hand trusting the provider itself.
A malicious provider can eventually abuse the sensible data of his
customers. The use of a Trusted Execution Environment (TEE) can
help to increase trust in the provider.
During the transmission the data are usually protected through en-
cryption, but on the target device it is decrypted and thus exposed
to the untrusted environment, which is often called Rich Execution
Environment (REE). In the REE runs the Operating System (OS)
and the applications of a device. TEEs allow executing code and
thus processing sensible data isolated from the rest of an untrusted
system. Thereby the integrity and confidentiality of sensible data
gets preserved, which is typically achieved by hardware-support.
But also the opposite direction is interested in protecting their data.
Digital Rights Management (DRM) can be ensured through the use
of TEEs. Copyright holders, for example, have the ability to restrict
the use of their content on an untrusted users device preventing
unauthorized distribution. Only the TEE can process the data and
it is not exposed to the surrounding system. These are common
use-cases for TEEs on mobile devices like smartphones and tablets.
Among others trusted execution can be used to isolate particularly
security-critical task like authentication from the rest of the system.
Examples are fingerprint- or face-id-authentication or mobile pay-
ment but also more general cryptographic operations like Android
Keystore [2] does. So that these tasks are protected from a possibly
compromised system and can not leak their sensible data like keys.
Most of today’s smartphones are powered by ARM processors
where as TEE often ARMs TrustZone technology is used. TrustZone
was first introduced in the ARMv6K architecture [9] in 2005 and
has been widely used since then. TrustZone enables the use of TEEs
that are separated from the rest of the system. While TrustZone

applications are relatively static, ARM introduced in 2021 a more
dynamic and flexible way of creating TEEs with so called Realms
which are part of the Confidential Compute Architecture (CCA)
in ARMv9-A. These Realms can be created and managed from an
unsecure environment during runtime while offering a TEE which
still preservers the confidentiality and integrity. Goals of Realm-
technology are to bypass the static behavior of TrustZone TEEs and
enable an easier use of TEEs so that more application developers
can make use of TEEs. This paper should give an overview over
the new CCA technology.
First of all the architectural background of ARM is summarized
in Section 2, where also the existing TrustZone technology is de-
scribed again. Afterwards the architecture and functionality are
covered and the individual software and hardware components in 3.
The next Section 4 is about the novelties of CCA and the differences
to TrustZone. Furthermore, the attestation of a realm is thematized
in Section 5.

2 BACKGROUND
2.1 Exception Levels
ARM offers different privilege levels in its architecture which are
referred as Exception Level (EL), because only an exception1 or
the return from an exception can change the current exception
level. These exception levels control the access to system resources
and memory. The ARM architecture has four different exception
levels, which are numbered with increasing privilege level from 0
to 3. Higher privilege levels do also have access to the resources of
lower privilege levels. On EL0, the least privileged stage, run user-
level applications, while operating system kernels run typically on
EL1. Hypervisors are executed on EL2 and the highest privilege
level, EL3, is reserved for the most secure system functions and
firmware [12].

2.2 Virtualization
Another security mechanism of ARM is the ability to use a hy-
pervisor and virtual machines. A hypervisor runs on exception
level 2 and controls the virtual machines on EL1. It is responsible
for forwarding exceptions as virtual exceptions to corresponding
virtual machine or provide memory for a Virtual Machine (VM).
ARM uses virtual address spaces, EL0 and EL1 use the same address
translation structure. The address translation structures are also
referred as translation regimes. The memory of a VM is isolated by
a second translation stage of the addresses [13]. This ensures that
the memory of a VM is not accessible by other VMs and vice versa.
Stage 2 translation means a virtual adress space is translated by an
1Other processor architectures often call it interrupt, but the definition of ARM is that
interrupts are only generated by external sources.



Johannes Weidner

OS into an so called Intermediate Physical Address Space (IPAS).
For the OS this IPAS appears to be a Physical Address Space (PAS),
but with the stage 2 translation the IPAS is translated to the real
PAS. The OS has only control over the stage 1 translation, while
the stage 2 translation is only controlled by the hypervisor. An
own virtual address space is used for the hypervisor. This kind
of isolation requires trust in the hypervisor to bypass this ARM
introduced TrustZone.

2.3 TrustZone
ARM TrustZone was first introduced in ARMv6K and provides
a hardware-based isolation of two execution environments. The
previous untrusted environment is now called normal world and
extended by a trusted environment the trusted world. Trusted world
should only run security-critical applications to reduce code and
therefore complexity to achieve a minimal attack surface and thus
a minimal Trusted Computing Base (TCB). Regular user applica-
tions, untrusted VMs and hypervisors, which are more vulnerable
due to their larger codebase remain in normal world. In addition
to the exception levels, which provide for a vertical separation of
privileges, a second security mechanism is now formed on the hori-
zontal level. Thus the processor knows two different security states,
the non-secure state refers to normal world and secure state refers
to trusted world. These security states control the access to the
physical address spaces. The term world describes basically the
combination of a processors security state and a PAS.
The current processor state is controlled just by one bit (SCR_EL3.NS)
and can run at the exception levels EL0, EL1 or EL2. EL3 must be in
secure state and cannot be executed from non-secure state. A switch
of the security state must always pass EL3 where trusted firmware,
a secure monitor [4] accomplish the switch. Furthermore the archi-
tecture posses two separated PAS’s, a secure and a non-secure one.
These PAS’s are disjoint and the distinction between them is not
just made by a tag. In addition custom translation regimes are used
to translate the virtual addresses, again divided between secure and
non-secure. A processor in non-secure state can only access the
non-secure PAS, because the address translation always maps the
virtual address to the non-secure PAS. From the secure-state it can
access both the secure and non-secure PAS, the selection of the
address space is checked by a NS bit in the translation tables. The
NS bit is just checked in the first stage of the address translation. If
the NS bit is set, the address belongs to the non-secure PAS.
Since ARMv8.4-A TrustZone also supports virtualization. A kind
of hypervisor is running on EL2 in secure state, which is typically
a Secure Partition Manager (SPM). The SPM is like a lightweight
hypervisor and can create isolated partitions. These partitions are
separated from each other and can not see each others resources.
Usually a service, worthy of special protection, running in Trust-
Zone should be used by a normal unsecure user application. The
user application does not know about TrustZone and uses a service
library which uses a kernel driver to invoke the trusted service.
The service library and the trusted service use mailboxes, which
are located in unsecure memory, for communicaiton. This memory
is also called World Shared Memory (WSM), because both secure
and non-secure world have access to it. The driver initiates the
switch of the security state by using a Secure Monitor Call (SMC)

Monitor

Realm

RMM

Re
al
m

VM

Re
al
m

VM

Normal

Hypervisor

Re
al
m

VM

OS

A

Secure

SPM

TOS

TA TA

EL3

EL2

EL1

EL0

RMI

RSI

Figure 1: Overview over ARM CCA, executing code in realm,
normal and secure world. Isolation is marked with dashed
lines. The black ones refer to world isolation enforced by
monitor. Grey ones mark the isolation provided by the hy-
pervising software at EL2.

to enter the monitor at EL3. The SCR_EL.NS bit is toggled and regis-
ters are saved. There are only a few absolutely necessary registers
duplicated, the majority of them like general purpose registers for
example exist only once. With the return from the SMC, the control
flow runs in the opposite security state. Here it is to the secure
state and executes the trusted service and returns again to the user
application. Scheduling of the trusted application or service is done
by the non-secure state OS scheduler, that means that TrustZone
does not protects the availability of the TEEs, but its confidentiality.
Furthermore it is important to note that the secure memory of
TrustZone can be encrypted, but is not encrypted by default, this is
the responsibility of the application.

3 ARCHITECTURE OF ARM CCA
With their new CCA ARM introduced in ARMv9-A in 2021 a new
kind of TEE referred as realm in their ecosystem. A realm is a dy-
namic TEE and also offers the possibility of attestation. Thememory
of a realm can be encrypted on a per-page granularity to prevent
physical attacks. Supporting of realms results of course in changes
in the architecture.
CCA extends normal world and secure world, which are already
known from TrustZone by two new worlds, a realm world and a
root world. A graphical overview is illustrated in Figure 1. With the
new worlds come again new associated PAS’s and security states.
Old secure world is actually split into a new secure world and the
root world. In the root world resides the montior which is low level
firmware and is again at EL3. Now root world has a different key
from the secure world so that the firmware including boot code
can be fully encrypted to prevent cold boot attacks. On previous
architectures this was not possible because the monitor was part of
TrustZones secure world, which was no suitable protection against
cold boot attacks [15]. The secure world behaves basically in the
same way as the TrustZone secure world to remain backward com-
patible for existing software. Realm world is quite similar to the
secure world and can operate at EL0, EL1 and EL2. It can be seen
as a TEE extension of the normal world, since it is controlled by a
normal world host. Although the control over a realm is located
in normal world a realm do not leak any information about it to



ARM Confidential Compute Architecture

Physical address space
Non-secure Secure Realm Root

Non-secure ✓ ✗ ✗ ✗

Secure ✓ ✓ ✗ ✗

Realm ✓ ✗ ✓ ✗

Se
cu

ri
ty

st
at
e

Root ✓ ✓ ✓ ✓

Table 1: Allowed access of the security states to the physical
address spaces.

normal world. The contents of a realm are isolated from every other
world besides root world and also isolated from any other realm.
Normal world host is often an untrusted hypervisor, but in general
the software is responsible for managing applications or VMs.
The access to the separated PAS’s depends again on the security
state this is shown in Table 1. Non-secure state has the most limited
access because it can only access the non-secure address space.
Realm state and secure state can each access their associated ad-
dress space and additionally the non-secure one. Root state can
access all available physical address spaces.
To control the current security state needs now a second bit to
support the newly introduced states. Thus the control state de-
pends on the from TrustZone known SCR_EL3.NS bit and a new
SCR_EL3.NSE bit. Root state does not depend on these security state
bits because at EL3 the security state is always root state. Isolation
is applied through a combination of hardware extensions called
Realm Management Extension (RME) and firmware in particular
the Realm Management Monitor (RMM) and the monitor.

3.1 Hardware: Realm Management Extension
The hardware part of ARM CCA refers especially to the memory
management and protection. Therefore several different translation
regimes reside in the hardware to translate a virtual address into
a physical address. A combination of the current security state,
current exception level, translation tables and sometimes selected
system registers determine the resulting PAS of the translation. The
system registers allow a hypervisor at EL2 for example to control
an output PAS of an exception level 0 or 1 translation in secure
state. A paging system is used for the address translation with the
translation tables. A page is called translation or memory granule
by ARM and must be 4KB in a RME system. ARM supports up to
four paging-levels in one translation stage. The selection of the
appropriate translation regime depends on the exception level and
security state a basic overview is shown in Figure 2. The translation
regime of EL3 is fixed because EL3 is always in root security state.
Although it can access all four PAS’s, it can not execute code which
resides outside roots PAS to prevent executing untrusted code in
root security state. Otherwise each exception level or a combination
of exception levels has its own translation regime per security state.
As an example has realm security state three different translation
regimes, a translation regime for EL0 and EL1 (EL0 & 1),so applica-
tion and OS are in a realm, a translation regime for EL0 and EL2
(EL0 & 2), application is directly controlled by RMM and another
for EL2. Realm EL0 & 1 translation regime uses a 2-staged address
translation, which is similar for translations from non-secure or

Realm VA

Normal VA

Secure VA

Root VA

Root PA

Realm PA

Normal PA

Secure PA

IPA

IPA

IPA

IPA

NS=1

NS=0

NS=0

N
S=

1

Figure 2: Overview over the possible mappings from a virtual
address space to a physical address space.

secure state and EL0 and EL1. A virtual address is first mapped into
an IPAS and with the second translation stage to the real PAS. The
first stage is usually controlled by an OS at EL1, while stage 2 is
managed by the hypervising software at EL2. Address translations
from EL2 need therefore only one translation stage. For clarity, this
is not shown in Figure 2.
Each security state, except root, has its own IPAS, secure state has
even two. Secure state can access both secure and non-secure PAS
and accesses to it are already separated in stage 1 translation. These
results in either one or the other IPAS based on the NS bit value
in a translation table entry. In realm state this distinction is done
in the second translation stage and thus both access to realm and
non-secure PAS end in one IPAS. Half of realms IPAS is unprotected
and resereved for non-secure memory with the other half protected
and reserved for realm memory. This is also illustrated in Figure 2.
The selection of the desired address space access from root state is
solved in a similar way with a second bit.
A Memory Management Unit (MMU) is responsible for perform-
ing both stage 1 and stage 2 translation and enforce so the iso-
lation. Note that the MMU also includes a Translation Lookaside
Buffer (TLB) to cache previous address translations for performance
optimizations. The whole address translation structure requires the
TLB to save additional the translation regime and security state a
TLB entry belongs to, to preventing security states from not using
their own entries. Caches face a similar problem and need to be
tagged with the associated PAS. An additional task of the MMU
is to perform Granule Protection Checks (GPCs) on the PAS’s to
ensure the access rights according to Table 1. GPCs always follow
on the address translation and check all physical addresses before
accessing the actual memory. This is necessary because ARM CCA
allows as new feature the dynamic assignment and change of phys-
ical memory granules between the different worlds. This is one of
the main novelties compared to the existing security mechanisms.
TrustZone also benefits from the dynamic assignments, as an Trust-
Zone extension, Dynamic TrustZone can memory move between
non-secure and secure world too. Therefore the current PAS of
each memory granule needs to be tracked in Granule Protection
Tables (GPTs). A GPC is like a subsequent paging stage where not
actual address translation is performed but a privilege check on
the addresses. GPTs reside in the root memory to protect it from
the other worlds and can only modified by the monitor running



Johannes Weidner

in root state. The monitor can update the GPTs dynamically and
thus performs the move of memory between the worlds. If a GPC
recognizes an access violation a Granule Protection Fault (GPF) is
generated and delivered to the triggering exception level. Updates
in GPTs require an invalidation of affected TLB entries and cache
lines. RME offers new intructions for invalidating TLB entries, but
the actual TLB structure depends on the implementation and on
the software side the actual implementation does not matter. The
caches are classified in caches which record the PAS of a memory
granule. These are normally close to the processor. Caches further
down in cache hierachy do usually not track the PAS. Monitor must
invalidate all caches which track the PAS. RME must perform GPCs
on devices with memory access like graphic processing units or
other DMA devices too. SMMUs are used for this purpose. The
SMMUs are connected between the device and the memory.
Furthermore, attestation, as discussed in Section 5, is a functionality
the hardware side must provide. The hardware needs an identity
and the availability to attest the initial firmware.

3.2 Software: Monitor And Realm Management
Monitor

Second part of ARM CCA is build in software, in particular the
implementation of a monitor and the RMM which operates at EL2.
Code of the monitor is the most privileged firmware at EL3 that
everything is build on and must be trusted by all other components.
The monitor is responsible for switching the current security state
and assignments of memory granules to different PAS’s. Switching
the security state is basically similar to TrustZone as described
in 2.3, but extended by two more states. Monitor software is the
only software that has access to the GPT. Assigning or changing
the PAS of a memory granule is done by updating the entries of
the GPT. Communication between less privileged software is done
by SMCs. SMCs are undefined at EL0 and only available for EL1
and EL2. So if less privileged software like a hypervisor wants to
move memory from one world to another it must perform a SMC,
whereupon the monitor will handle the switch. An example of an
open-source implementation of a monitor is [4].
RMM operates at EL2 and manages the execution environment of
realms. It is the hypervisor-equivalent in realm world but signif-
icantly simpler than a usual hypervisor. A separation of tasks is
done for realm world between the RMM and normal world host.
Therefore the implementation of RMM can kept simpler which
results in a smaller TCB. For example, the RMM implementation
verified in [17] has only about 3500 lines of code [17], which is
significantly less than a normal hypervisor. The normal world host
is usually the hypervisor of normal world. However, if virtual-
ization in normal world is not used, the OS takes over this role.
All decision-making operations like realm creation, scheduling of
realms or dynamic resource management are made by the host.
The RMM is responsible for isolation of the realms among each
other, perform the context switch between realm executions and
providing a Realm Management Interface (RMI) for control by the
host. The contents of a realm are not visible to the host although
the host can delegate and undelegate memory granules dynami-
cally to a realm. Delegated memory of a realm is protected by the
security state and if a host undelegates the memory from a realm,

RMM ensures with memory scrubbing that no data is leaked to
other worlds. Isolation of the realms from each other is guaranteed
by the second stage of realm address translation where a Virtual
Machine Identifier (VMID) identifies the realm VM. The VMID is
chosen by the host und RMM ensures that each VMID of a realm
is unique. A Realm Descriptor (RD) contains the attributes of a
realm which include information about paging and IPAS, actual
state of the realm, VMID, information needed for attestation like
the measurement of the realm and other attributes needed for iden-
tifying a realm by the host. A VMID is not enough for identifying a
realm because multiple realms can run in one realm VM and thus
have the same VMID. Also the measurement does not have to be
unique, if for example two realms are initial equal and thus have
the same initial measurement. Therefore an extra Realm Personal-
ization Value (RPV) is provided by the host. The owning realm of
a memory granule is identified by the address of a RD. The host
can however prevent a realm from execution because it controls
the scheduling, so availability of a realm is not guaranteed. This
also includes providing memory granules for address translation
or other realm metadata. There are 23 different RMI commands
for creating and destroying realms, delegating and undelegating
memory granules, copying data from non-secure PAS, control the
Realm Translation Tables (RTTs), manage a Realm Execution Con-
text (REC) and a few other. Each RMI command is implemented as
SMC for a world switch to realm world where the requested service
is executed. Afterwards a second SMC is used to return to the host.
RMM includes Realm Service Interface (RSI) which provides ser-
vices to the realms. This allows realms to request operation for
attestation reports from the RMM, the management of shared mem-
ory with the host or return from a realm via a host call. The imple-
mentation of a RMM is independent of the monitor can be replaced
because of the defined interface. Example implementations are [5]
or [6].

3.3 Realm Usage
Like already mentioned in Section 3.2 the responsibility of realm
management is with the host. So everything from creation, resource
assignment, to execution of a realm must be initiated by it via RMI
calls to RMM. This subsection describes the necessary steps to cre-
ate, execute and destroy a realm and move memory back to normal
world to return results for example. For a more detailed description
or other specific use cases see [14].
For a realm creation the host needs to allocate three memory gran-
ules delegated them with RMI_GRANULE_DELEGATE to realm
world. Fist one is needed to store the RD, another as starting level
for the RTT-structure and one for providing parameter for realm
creation. A following RMI_REALM_CREATE call creates the realm.
Additional RTTs must be added to the paging structure of the realm
VM. After realm creation the host can assign memory granules
populated with content by the host to the realm. This requires
again first memory delegation and with RMI_DATA_CREATE the
data is copied from a non-secure granule to the destination granule.
Thereby the data is hashed and the hash is included in the measure-
ment of the realm. For the execution at least one REC is needed,
but it can exist more within one realm. It can be compared with
an OS and applications, where realm is the OS and the single RECs



ARM Confidential Compute Architecture

correspond to applications. A REC is a data structure the RMM
needs internally to stores the saved context of a realm execution
on a virtual processing element. There the host provides the initial
state of the realm, like program counter, general-purpose register
or other values. A RMI_REALM_ACTIVATE call the realm gets acti-
vated and can now be scheduled by the host. With the activation
the host loses it capability to modify any contents of the realm and
the initial measurement, which is needed for attestation, gets fixed.
At this point an attestation of the initial realm state would be useful
to establish trust in the realm. The realm can requests an attesta-
tion report from the RMM via RSI, about the realm initial state,
which includes measurements of RMM, Monitor, and the hardware
platform identity. If the attestation is successful, confidential mem-
ory granules can be moved to the realm by mapping non-secure
memory granules into the unprotected part of realms IPAS. If fur-
ther modification of the realm owner should be prevented, the data
should be copied to realms memory before continuing with the
actual work. In [14] a shared memory protocol is proposed, but it
is not included in the RMM specification by default.
To destroy a realm the host first destroys or undelegates all re-
sources like memory granules, RECs and RTTs belonging to that
realm and finally destroys the realm itself. The destruction order of
the resources does not matter.

3.4 Realm Interrupts
Realms can only receive virtual interrupts which are triggered
by an emulated Generic Interrupt Controller (GIC), provided by
the normal world host, via RMI calls. The GIC is mapped through
unprotected IPAS to the realms. A realm can not rely on an interrupt
made available by an untrusted host and must consider malicious
interrupts in its own interrupt handler.

4 BENEFITS OF ARM CCA
Data and code in a realm are fully protected by the ARM CCA
architecture. Realms preserve their integrity and confidentiality,
even against higher privileged software in other worlds. Realms
are highly portable on the ARM architecture, because they can be
deployed on the VM level and are controlled by the standardized
RMM. They also enable a broader range of application developer
to use a TEE. Existing code that runs in non-secure world can also
executed in realm world. The realms operate independent from the
already existing TEEs running in TrustZone. That means, that they
are backward compatible to existing trusted applications which can
still run in their execution environment alongside to realms. The
only limit of using realms as TEE is the available memory and are
therefore available for more than just a few applications. Moreover
the integrity of the realm state and its underlying platform can be
verified by its owner with attestation tokens.
CCA builds on TrustZone, but also tries to avoid, improve or extend
the limiting properties of it. One problem with TrustZone is that it
behaves relatively static because, for example, it needs pre-allocted
memory areas. For this reason are secure and non-secure worlds
fixed at boot time and can not be changed without a reboot. CCA
proposes with realms a dynamic approach to tackle this problem
and provide dynamically created TEEs with dynamic resource allo-
cation and management. The second big problem with TrustZone

CCA attestation token
Realm token
Challenge
RPV
Initial measurement
Extensible measurement
Hash algo id
Public RAK
Public key hash algo id

Signature(RAK)

CCA platform token
Platform profile
Platform challenge
Implementation ID
Instance ID
Config
Lifecycle
SW-components
Verification-service
Hash algo id

Signature(CPAK)

Figure 3: Structure of CCA attestation token.

is that code must have trust in the higher privileged software that
run in the underlying higher exception level. For example a trusted
application on EL0 which is running on a trusted OS at exception
level 1. This trusted OS run on a SPM on EL2. Methods like the
secure virtualization only help separate multiple secure VMs on
the same exception level, but do not protect the trusted application
from its OS or hypervisor. The trusted application is verified by
the higher privileged trusted OS which is verified by its hypervi-
sor, so trust in the application depends on a chain of trust. This
also applies to realms, but their hypervising software is separated
and so the TCB is dramatically reduced, as described in Section 3.
Moreover, the introduction of CCA solves the weaknesses of the
old architecture like possible cold boot attacks [15] for example.
Nevertheless, realms should not replace TrustZone, but rather com-
plement it. TrustZone has its use case for security-critical tasks of
silicone providers or Original Equipment Manufacturers (OEMs),
which typically depend on the hardware. These tasks are relatively
static and their number is manageable by the limited resources of
TrustZone. Realms give developers the possibility to execute own
code in a TEE and can manage this environment themselves.

5 REALM ATTESTATION
Attestation enables the owner of a realm, a reliant party, to establish
trust in the realm, this refers to both local and remote attestation.
ARM CCA implements a token based attestation model where a
realm can initiate an attestation via RSI from RMM. Therefore a
memory destination, where the token is written to and a challenge
is given to RMM. The challenge is used to demonstrate freshness of
the generated token and prevent replay attacks. RMM will create
an attestation token which consists of a realm token and a CCA
platform token. Both token include a collection of claims about
the state, one about realm state, the other about the platform state.
The detailed content is illustrated in Figure 3. The realm token



Johannes Weidner

Realm

RMM

Monitor

CCA Hardware

+

Reliant Party

Request Attestation Challenge

Request Platform
Attestation

RMM-Challenge

Request Platform
Attestation

RMM-Challenge

Realm Attestation
Token

CCA Platform
Token

CCA Attestation
Token

Attestation
Protocol

↑CCA Attestation
Token

Figure 4: ARM CCA attestation flow, parameters are marked
in blue boxes. CCA Attestation Token (green box) is returned
to the reliant party via an attestation protocol. Attestation
protocol is not in the scope of ARM CCA. Reliant party can
then use a verification service to verify the token.

includes the realm initial measurement, which is created by the
realm activation RSI call and realm extensible measurements. Realm
extensible measurements are measurements of the realm which
can be updated during a realms lifetime. A realm can extend this
measurements again via RSI, initial state of the measurements is
zero. Hash algorithm id identifies the used hash algorithm. The
Realm Attestation Key (RAK) is used to sign the realm token.
CCA platform token generation is requested by the RMM from
the monitor and hardware. It contains attributes about the CCA-
platform like measurements of the software components RMM and
monitor, platform identity and state, but also a challenge provided
by the RMM. A realm is bound to the platform by a hash of the
public RAK. The CCA platform token is signed by a CCA Platform
Attestation Key (CPAK) which is typically provided by the hard-
ware. ARM CCA only provides the CCA platform token, but does
not specify a protocol for attestation. A graphical overview over
the CCA platform token generation is shown in Figure 4.
Realms need to implement their own attestation protocol since at-
testation is out of scope for CCA [10]. For the developer this means
both free choice and more effort and required knowledge of attes-
tation protocols. CCA platform token is exchanged with the reliant
party to verify it. For the verification the CCA platform attestation
token and realm attestation token need to be verified separately.
The CCA platform via the CPAK and the platform measurements.

Therefore verification data from the hardware and firmware devel-
oper is needed for comparison. Finally the realm attestation token
can be verified by provided verification data. The verification data
is usually signed by an instance, which is trusted and therefore trust
in the realm is established. Verification is intended to be used as
an verification service of a trusted party, which needs information
about the whole CCA supply chain like the platform itself for verifi-
cation. Veraison [7] is an open source project which aims to provide
a convenient way to build attestation verification services. Thus
the possibly complex task for a arbitrary user should be facilitated.

6 RELATEDWORK
ARM CCA specification was released in 2021 and there is currently
no physical hardware available with applied CCA concepts. The
scientific research on CCA is thus still at the beginning and rela-
tively spare. There are first implementations of the monitor [4] and
RMM [5] [6], which can simulated in an emulator like Qemu.
Li et al. [17] formally verify one of these early implementations.
To guarantee a secure execution within a realm the underlying
software components must operate correctly in order not to unin-
tentionally endanger the integrity or confidentiality of a realm. This
can only be guaranteed with a formal verification of the software.
While the complete formal verification of a hypervisor is unman-
ageable, a formal verification of RMM and monitor is possible. By
limiting their tasks, their code base reduced and made a formal
verification feasible. During the verification process could eight
bugs within the software identified and solved.
TEEs, however are an important topic and ARM CCA is only one
architecture. Other processor architectures are also working on
supporting hardware mechanisms to provide TEEs. For example
Intel Software Guard Extension (SGX) [18] uses isolated, encrypted
so called enclaves, AMD Secure Encrypted Virtualization (SEV) [1]
uses encryption to isolate on a VM level or RISC-V based Key-
stone [16], which uses a combination of hardware and software,
like CCA to run isolated enclaves.

7 CONCLUSION
With realms ARM added a dynamic way of creating TEEs to its ar-
chitecture. Realms preserve the confidentiality and integrity of their
data while being created and controlled from a non-secure host. Iso-
lation guarantees are enforced through a combination of hardware
and software extensions. Because the management of the realms is
taken over by an insecure host. RMM and monitor only care about
isolation, thus the TCB can be reduced dramatically compared to
a complete hypervisor. A realm is isolated from normal world, se-
cure world and other realms. Realm memory is encrypted and even
supports a fine granular encryption on a per-page base. CCA aims
to provide TEEs to a broader range of developers by promising
the execution of existing software in realms with minimal changes.
Unfortunately there is no out-of-the-box possibility for using sealed
storage. Attestation is available through a token-based attestation
leaving the choice of a protocol by the realm developer. ARM CCA
is just at the beginning with available hardware platforms which
support CCA the interest in this architecture will increase.



ARM Confidential Compute Architecture

REFERENCES
[1] 2020. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection

and More. (2020). https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-more.pdf.

[2] 2022. Android Hardware-backed Keystore. (2022). https://source.android.com/
docs/security/features/keystore.

[3] 2022. Arm architecture - confidential compute architecture. https://www.arm.
com/architecture/security-features/arm-confidential-compute-architecture.

[4] 2022. ARM Trusted Firmware-A. (2022). https://github.com/ARM-software/arm-
trusted-firmware.

[5] 2022. TF-RMM. (2022). https://github.com/TF-RMM/tf-rmm, accessed at:
2.1.2023.

[6] 2022. TF-RMM. (2022). https://github.com/Samsung/islet, accessed at: 2.1.2023.
[7] 2022. Veraison. https://github.com/veraison, accessed at: 2.1.2023.
[8] Arm 2021. Learn the architecture - AArch64 memory management. Arm.
[9] Arm 2021. Learn the architecture - TrustZone for AArch64. Arm.
[10] Arm 2022. Arm CCA Security Model 1.0. Arm. https://documentation-service.

arm.com/static/610aaec33d73a34b640e333b?token=.
[11] Arm 2022. Introducing Arm Confidential Compute Architecture. Arm.
[12] Arm 2022. Learn the architecture - AArch64 Exception model. Arm.
[13] Arm 2022. Learn the architecture - AArch64 virtualization. Arm.
[14] Arm 2022. RealmManagementMonitor specification. Arm. https://documentation-

service.arm.com/static/63614615c5a70d2cdb15fe22?token=.
[15] Patrick Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara, Himanshu

Raj, Stefan Saroiu, and Alec Wolman. 2015. Protecting Data on Smartphones and
Tablets from Memory Attacks. SIGARCH Comput. Archit. News 43, 1 (mar 2015),
177–189. https://doi.org/10.1145/2786763.2694380

[16] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys ’20). Association for Computing Machinery, New York, NY,
USA, Article 38, 16 pages. https://doi.org/10.1145/3342195.3387532

[17] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and Verification of the Arm Confidential
Compute Architecture. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 465–484.
https://www.usenix.org/conference/osdi22/presentation/li

[18] Amy Santoni Vinnie Scarlata Simon Johnson, Raghunandan Makaram.
[n. d.]. Supporting Intel SGX on Multi-Socket Platforms. ([n.
d.]). https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf.

GLOSSARY
TEE Trusted Execution Environment
REE Rich Execution Environment
DRM Digital Rights Management
CCA Confidential Compute Architecture
RMM Realm Management Monitor
TCB Trusted Computing Base
EL Exception Level
VM Virtual Machine
IPAS Intermediate Physical Address Space
OS Operating System
PAS Physical Address Space
SPM Secure Partition Manager
WSM World Shared Memory
SMC Secure Monitor Call
RME Realm Management Extension
RMM Realm Management Monitor
MMU Memory Management Unit
TLB Translation Lookaside Buffer
GPC Granule Protection Check
GPT Granule Protection Table
GPF Granule Protection Fault
RMI Realm Management Interface
RSI Realm Service Interface
VMID Virtual Machine Identifier

RD Realm Descriptor
RPV Realm Personalization Value
RTT Realm Translation Tables
REC Realm Execution Context
GIC Generic Interrupt Controller
RAK Realm Attestation Key
CPAK CCA Platform Attestation Key

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/TF-RMM/tf-rmm
https://github.com/Samsung/islet
https://github.com/veraison
https://documentation-service.arm.com/static/610aaec33d73a34b640e333b?token=
https://documentation-service.arm.com/static/610aaec33d73a34b640e333b?token=
https://documentation-service.arm.com/static/63614615c5a70d2cdb15fe22?token=
https://documentation-service.arm.com/static/63614615c5a70d2cdb15fe22?token=
https://doi.org/10.1145/2786763.2694380
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/osdi22/presentation/li
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Exception Levels
	2.2 Virtualization
	2.3 TrustZone

	3 Architecture Of ARM CCA
	3.1 Hardware: Realm Management Extension
	3.2 Software: Monitor And Realm Management Monitor
	3.3 Realm Usage
	3.4 Realm Interrupts

	4 Benefits Of ARM CCA
	5 Realm Attestation
	6 Related Work
	7 Conclusion
	References

