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ABSTRACT
Intel Software Guards Extension (SGX) is a CPU-based mechanism
for creating a Trusted Execution Environment (TEE), called an
enclave, for user-level application code. The enclave is a hardware-
isolated runtime environment whose memory is isolated from other
hardware and software on the system, including the Operating
System (OS) and hypervisors. This isolation mechanism comes
at the cost of severely restricting the application’s programming
model, since standard OS abstractions, such as Input/Output (I/O)
operations, are not safely available. This makes it necessary to adapt
applications to run in a standard enclave context. Using SGX to run
unmodified applications requires a secure runtime environment
that provides the necessary C Standard Library (libc) interface that
interacts securely with the untrusted host OS services. The most
promising approaches to implementing such an environment are
library OS or container-based.
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• Computer systems organization → Cloud computing; • Se-
curity and privacy → Distributed systems security;
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1 INTRODUCTION
The increasing use of cloud computing to analyze confidential and
sensitive information, such as medical data, requires mechanisms
to ensure its security and integrity. In a traditional cloud computing
environment, data security is the sole responsibility of the cloud
provider. This requires unwavering trust in their delivery of secure
and confidential systems. However, the cloud infrastructure pro-
vided typically only protects the provider’s privileged code from
malicious intrusion by application code. On the other hand, there is
no protection for the application code and data from the provider
or from malicious actors with super-user access to the provider’s
system hardware or software stack.

The goal is to provide secure and confidential data handling by
establishing a TEE that is shielded from these malicious attackers. A
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TEE is a processing environment that is protected from all software
and physical attacks, guarantees the authenticity of the executed
code and data, and provides remote attestation to authenticate its
trustworthiness to third parties [20].

An exemplary hardware-based mechanism for providing a TEE
is the Intel SGX provided in its processors. It allows complete isola-
tion of an application from the host system by providing an isolated
virtual memory address space whose confidentiality and integrity
are guaranteed. To ensure the integrity of the application, it pro-
vides an attestation mechanism at startup and restricts control flow
by providing only specific entry points.

Ideally, the benefits provided by a TEE should be easily acces-
sible to legacy applications. However, an enclave imposes several
restrictions on the application code it encloses, such as not allow-
ing the execution of system calls, so a legacy application cannot
run in a standard enclave environment. To allow an unmodified
application to run, a compatibility layer is required, which provides
the application with a trusted libc internal interface and a shielded
external interface to the untrusted host OS to use system calls.

The main goals of this compatibility layer are:
(i) Support legacy applications without modification
(ii) Minimize the Trusted Computing Base (TCB)
(iii) Minimize additional performance overhead
Currently, the most mature approaches that best fullfill the de-

fined goals for the compatibility layer are the container-based ap-
proach used in Secure CONtainer Environment (SCONE) [3] and
the library OS-based approach used in Gramine-SGX [26]. This
paper first introduces both frameworks and then compares them
using the aforementioned goal metrics.

2 BACKGROUND
This section summarizes the features of SGX and gives a brief
introduction to the basic principles of the frameworks.

2.1 Intel SGX
Intel SGX [7] [8] is a hardware-based mechanism for creating a TEE,
called an enclave, that ensures the confidentiality and integrity of
the application running within it.

2.1.1 Enclave. The basic building block of an enclave is an iso-
lated memory region in the Dynamic Random Access Memory
(DRAM), called the Processor Reserved Memory (PRM), which is
inaccessible to code running outside the enclave. The Enclave Page
Cache (EPC) is the main subset of the PRM and contains all the
pages reserved for enclaves. To ensure the freshness, confidential-
ity, and integrity of enclave data, these pages are encrypted in
the DRAM using a dedicated hardware unit in the CPU called the
Memory Encryption Engine (MEE) [11]. A processor can support
multiple enclaves running in parallel, but pages of the EPC can-
not be shared between enclaves and must be allocated exclusively.
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Figure 1: Enclave Thread Lifecycle

An enclave supports multiple concurrent threads and also allows
dynamic creation and destruction of new threads on newer proces-
sors [28]. Code running inside an enclave is always in the lowest
privilege mode, i.e. user mode. Enclave code has direct access to
non-enclave memory, which must be used with care, as its security
and integrity are not guaranteed.

2.1.2 Enclave Lifecycle. An enclave is created with the ECREATE
instruction, which initializes the SGX Enclave Control Structure
(SECS), the main data structure containing the enclave’s metadata,
from a free EPC page. The untrusted system software then loads
the enclave code and data by invoking the EADD instruction, which
cryptographically measures the memory layout of the added page
in the enclave. For each thread running inside the enclave, a Thread
Control Structure (TCS) must be initialized. After loading is com-
plete, the system software must call the EINIT instruction to com-
plete the initialization, for which it needs a special initialization
token granted by Intel’s proprietary Launch Enclave. On newer
processors, it is also possible to dynamically add and remove pages
from the PRM after the initialization [28] has been completed. The
EREMOVE instruction tears down an enclave by freeing enclave
pages as long as they are not currently being used by an enclave
thread.

2.1.3 Enclave Thread Lifecycle. The thread lifecycle inside the
enclave is illustrated in Figure 1. To initially enter an enclave, a
process must invoke the EENTER instruction 1 , which takes the
address of an unused TCS as a parameter. The instruction puts the
processor in enclave mode, allowing the thread to access the EPC
pages of the specified enclave. The instruction sets the Relative
Instruction-Pointer (RIP) to the specified entry point in the TCS,
restricting the entry to a predefined point, similar to the invocation
of system calls in the OS. When a hardware exception, fault, or
interrupt is triggered for an enclave thread 2 , the enclave executes
a Asynchronous Enclave Exit (AEX). During the AEX 3 the current
processor context is then stored in a secure memory area in the
enclave, the State Save Area (SSA), to protect the secrets of the
enclave from the rest of the system. After leaving the enclave, the
thread enters the exception handling routine of the host OS 4 .

When the interrupt context terminates, the thread can re-enter the
enclave by calling the ERESUME instruction 5 , which restores the
stored processor state from the SSA and resumes execution of the
enclave code. The thread synchronously exits the enclave by calling
the EEXIT instruction 6 , which returns the processor to user mode
and restores the context stored in EENTER.

2.1.4 Software Attestation. Certifying the contents of an en-
clave requires a cryptographic signature, which is provided by the
software attestation mechanism. SGX implements two attestation
schemes, one for local attestation on a machine and one for re-
mote attestation. Local attestation is performed using the EREPORT
command, which uses the measurements calculated during enclave
initialization and a special tag to generate an attestation report. Re-
mote attestation requires an additional proprietary Quoting Enclave
from Intel, which verifies and signs the report before sending it to
the remote party.

2.1.5 Limitations. Because the enclave code runs in lowest priv-
ilege mode, it cannot perform I/O operations without interfacing
with the system software, making it impossible to make system calls
from inside the enclave. To make a system call, the enclave must
be exited. The parameters and result of the system call must be ex-
changed with the environment by accessing non-enclave memory,
a so-called shield then checks the validity of the results. Context
switches in and out of the enclave are expensive operations, nearly
60 times slower than a context switch between user and kernel
mode [27], which also increases with the size of the moved memory
buffer [10].

2.2 Container
Containers are a mechanism for using OS-level virtualization to
isolate processes [23]. In the Linux kernel, this is primarily accom-
plished by using the kernel features of namespaces and cgroups. The
Linux namespaces feature provides processes with their view of
the system by wrapping the global system resource in an abstrac-
tion. A process namespaces thus defines its usable resources. Linux
currently has eight different namespaces: cgroups, IPC, Network,
Mount, PID, TIME, Users, and UTS [13]. The cgroups feature allows
the partitioning of tasks into hierarchical groups. These groups can
then be used by the kernel’s resource controllers to monitor and
limit resource allocation [18][14].

2.3 Library OS
Historical library OS or program libraries provide general OS ab-
stractions as so-called supervisor routines that run in the same con-
text as the application code [5]. In contrast, the modern library
OS is characterized by running the OS interface on which an ap-
plication depends in the application address as a library [19]. The
implemented library OS interfaces with the supervisor host kernel
with a small fixed set of abstractions. Thus, the libOS can be seen
as a lightweight virtual machine implemented as a picoprocess. A
picoprocess is a stripped down virtual machine running in an iso-
lated memory region, but without direct device access privileges.
Instead, it is provided with a very narrow system call interface to
interact with its environment [9]. This approach has the advan-
tages of providing security through application isolation and faster
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independent evolution of OS components, and can provide better
performance for applications by using a customized libOS [25].

2.4 Threat Model
The threat model assumes a malicious adversary with privileged
access to the entire hardware and software stack of the system.
This renders all other system software, including the OS and the
hypervisor, untrustworthy and allows the modification of any file
in unprotected memory areas as well as the I/O traffic of the system.
The only trusted resources are the TCB, which is is generally defined
as the "software and hardware on which security depends" [15]. It
includes software and hardware components that are responsible
for enforcing the security policy of the system; in this paper, the
TCB includes the CPU and the code running inside the enclave. In
general, the TCB should be as simple as possible in terms of the
function it must perform in order to reduce its attack surface [1].

3 FRAMEWORK DESIGNS
This section provides an overview of the SCONE and Gramine-SGX
framework designs for securing applications.

3.1 SCONE
To protect the integrity and confidentiality of the application and its
data, SCONE [3] uses a so-called secured container to take advantage
of the features of SGX. It uses a shielded external enclave interface
based on the system calls Application Programming Interface (API)
to interface with the OS host. The application inside the enclave is
providedwith a libc interface by including a custommusl libc library
in the container. To use the SCONE framework, the applicationmust
be statically linked against the SCONE libraries. In addition, the
secured container integrates with the Docker container environment
for easy deployment and use. The design of the framework is shown
in Figure 2 and will be discussed in the following sections. The main
features of SCONE are the interface shielding, the M:N threading
model, the asynchronous system call interface, and the Docker
integration of the secured container.

3.1.1 Interface Shielding. The shielding library serves two pur-
poses. The first is to protect the application from low-level attacks
via the container’s external interface, provided by the system call
shield. The second is to ensure the confidentiality and integrity
of the data passing through the OS, which is provided by the file,
network and console shield.

1) System call shield: One of the main threats that must be dealt
with when shielding a very large interface such as the system
call API is the so-called Iago attacks [6]. In this attack, the kernel
can manipulate the application by providing malicious system call
return values. The system call shield checks the validity of system
call results Section 3.1.3, this includes checking the given buffer
sizes as well as the destination of given pointers to protect against
these attacks.

2) File system shield: The file system shield protects the confiden-
tiality and integrity of the application’s files. The shield encrypts
files before saving them to disk by splitting a given file into blocks
of fixed size to allow detection of file modifications by the environ-
ment. It also assigns a unique authentication tag to each block to
ensure the freshness of the data and to protect against so-called
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Figure 2: SCONE Design

rollback attacks, where the system state is rolled back to a previous
state.

3) Network shield: The shield encrypts all network traffic to
ensure its security, including inter-container communication. The
network shield wraps all sockets created inside the container in
a Transport Layer Security (TLS) layer, which can be achieved
without any application level changes.

4) Console shield: To allow the attachment of the container en-
vironment an I/O stream of the containerized application must be
provided that protects the confidentiality of the data being sent. The
console shield uses symmetric encryption to send the contents of
the streamwith block-sized granularity, and adds protection against
message reordering or replay by assigning a unique identifier to
each block.

3.1.2 Threading Model. The SCONE framework uses an M:N
threading model, where M application threads running in the en-
clave are mapped to N OS threads. The number of application or
OS threads can be dynamically changed, but the allowed number
of OS threads within the enclave is typically limited by the number
of available CPU cores to allow the enclave to utilize all cores. The
framework implements a user-level scheduler that controls the map-
ping of OS to enclave threads, allowing it to save enclave transitions
for operations that require waiting. The user-level scheduler does
not support preemption, which is not a problem in the examples
considered, since all threads execute system calls or synchronization
routines. In addition, the SCONE kernel module spawns multiple
OS threads to execute the system call requests of the asynchronous
system call mechanism described in Section 3.1.3.

3.1.3 Asynchronous System Calls Interface. As explained in Sec-
tion 2.1, it is not possible to make system calls from the enclave
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Figure 3: Asynchronous System Call Interface

context, so an enclave-external mechanism is required to execute
them. To execute the system call, the arguments and their refer-
enced memory areas must be copied out and the results must be
copied back into the enclave. Since enclave transitions are slow,
the SCONE provides a asynchronous system call interface that uses
two lock-free, multi-producer, multi-consumer queues [2], the re-
quest queue and the response queue, to handle the application’s
system calls. The calls are then executed using the OS threads of
the SCONE kernel module, as explained in Section 3.1.2.

The procedure for executing a system call is shown in Figure 3.
The application’s enclave thread copies the arguments and their
referenced memory 1 , if any, to a buffer outside the enclave. The
thread then adds the description of the system call to a syscall_slot
data structure 2 using the thread’s local storage. The application
thread then yields to the user-level enclave scheduler 3 , which
runs another application thread until the system call is complete.
The system call is issued by placing the reference to its syscall_slot
in the request queue 4 . One of the kernel module threads dequeues
the request 5 , executes the system call, and then places the result
in the response queue. The result is then copied from the result
memory buffer into the enclave 6 and validated by the shield. The
application thread is rescheduled 7 .

3.1.4 Docker Integration. Integration of the secured container
with Docker is accomplished by wrapping the standard Docker
client with a SCONE client. Creating a secured container image
requires a trusted environment where the SCONE client initializes
the necessary metadata for the file system shield to ensure the
confidentiality and integrity of the files contained in the image.
This metadata is stored in a filesystem protection file, which is then
signed by the author of the image to protect its integrity. To start
the container, each secure container needs a Startup Configuration
File (SCF) containing the encryption keys of the I/O streams and
the file system protection file A hash of the file system protection file
is included to verify its integrity. Since SGX does not protect the

confidentiality of the enclave code, the SCF is passed over a secure
TLS connection at startup, after validating the correct setup of the
container using the attestation mechanism provided by SGX.

3.1.5 Limitations. The SCONE framework has some usability
and performance limitations. First, it does not support all possi-
ble system calls; for example, the fork system call [21], although
support for creating new threads is possible with newer versions
of SGX that allow dynamic thread creation [28]. It only supports
creating application threads with pthread_create [22]. Full cloning
of a process and its enclave is also not possible. An unmodified
application binary will not work with the SCONE framework, as
it must first be statically linked against the SCONE library. It also
does not support shared libraries to ensure that all code is verified
by the enclave during its initialization. In addition, the user-level
scheduler requires constant execution of system calls, which may
exclude certain applications from use in the enclave context.

3.2 Gramine-SGX
Gramine-SGX [26] runs unmodified applications on SGX by includ-
ing the Gramine library OS. [25] in the enclave. Figure 4 shows the
design of the framework. The libOS provides the application with
its expected runtime environment by including the glibc C library
and supports dynamic loading and linking, allowing it to run un-
modified binaries in the enclave. The C library then interfaces with
the Gramine library OS, which implements the standard system
call API. The libOS implements features of OS, such as memory
segmentation, to reduce the number of enclave transitions. To in-
terface with the outside of the enclave, it uses a custom Gramine
Application Binary Interface (ABI) [26]. The ABI calls are received
by a Platform Adaption Layer (PAL) which translates the enclave’s
Gramine ABI calls into a more restricted set of system calls on
the host OS. This section first summarizes the features of the OS
gramine library, then describes the customizations needed to im-
plement it inside the enclave, and finally explains the shielding of
the external interface.
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3.2.1 Gramine Library OS. The main idea behind libOS is to
provide OS virtualization to the application by implementing the OS



Securing Whole Applications with SGX AKSS2023, January 2023, Erlangen, Germany

interface as an application library. This can improve the efficiency of
virtualization by extracting the functional layer below the system
call interface into the memory mapping of the application. The
Gramine library OS supports multi-process applications, where
multiple instances of the OS jointly implement abstractions of the
Portable Operating System Interface (POSIX), but appear as a single
OS. To do this, the instances use message passing over byte streams
that connect the picoprocesses, on which it implements a Remote
Procedure Call (RPC) interface for coordination.

The application and library OS are isolated from the rest of the
system by the Trusted Reference Monitor and run in a picoprocess,
explained in Section 2.3, The main resource required by the monitor
is the application specific manifest file, which contains the allowed
file system view and network restrictions, allowing it to prevent
access to unauthorized resources. It also installs a system call filter
and intercepts critical system calls to ensure isolation of the ap-
plication, thereby also protecting the host OS from the library OS
instances.

To interface with the outside world, Gramine uses a simple
generic ABI adapted from Drawbridge [19]. Drawbridge is a li-
brary OS similar to Gramine that provides application-compatible
OS virtualization and isolation on Windows. In this context, Draw-
bridge provides a small set of ABI calls sufficient to interface with
the host kernel. Gramine requires a lightweight intermediary layer,
the PAL, outside the picoprocess to translate the Gramine ABI calls
into a restricted set of system calls to the host kernel.

3.2.2 Gramine Adaption for SGX. To ensure the integrity of the
files used and to protect the application from the host file system,
the application’s manifest is extended to include hashes of the
trusted files for verification. The manifest is used to initialize the
enclave and thus also contains initialization parameters of the SGX
enclave. Themanifest file itself is also signed to protect its integrity.

The untrusted PAL uses the manifest file to initialize the enclave
by invoking the SGX driver, and ensures correctness by using local
attestation. The untrustworthiness of the PAL requires the addition
of a shield to protect the application and libOS from potentially
malicious input from the PAL.

The framework supports multi-process applications by combin-
ing multiple enclaves into an enclave group. To allow coordination
within the group, separate instances of libOS communicate via byte
streams secured with TLS and authenticate themselves using the
local attestation mechanism provided by SGX.

3.2.3 Interface Shielding. To shield the application from the
untrusted PAL and the host OS, the framework implements three
types of shields.

1) Loader shield: The framework allows dynamic loading and
linking, so it must include a trusted dynamic loader in the enclave.
After the enclave has been set up correctly by the PAL, the trusted
bootloader loads the libraries and files specified in the manifest and
ensures their correctness by performing a cryptographic measure-
ment and verifying it against the provided hash of the manifest. To
verify the correctness of a library, the framework must generate
a unique signature for each combination of supported library ver-
sions with the application. Therefore, it only loads libraries whose
hash it recognizes, which contains the problem of loading corrupt

libraries with known Common Vulnerabilities and Exposures (CVE)
that appear after the manifest is created.

2) Interface shield: Gramine-SGX defines a custom ABI to inter-
face with the untrusted environment, since the system call interface
was not designed with a model of mutual distrust between the OS
and the application, as evidenced by its vulnerability to Iago attacks.
[6]. The Gramine ABI has a more limited interface, which eases
the challenge of distinguishing expected from malicious behavior
when validating the response from the untrusted environment. The
ABI interface is divided into three categories based on the ease
of validation into safe, benign or unsafe ABI calls. Most ABI calls
are characterized as safe and are easy to validate. For benign calls,
the shield can check if the response violates the specification and
either reject it or let the libOS handle the violation. Only two calls
are categorized as unsafe, which means that the validity of their
responses cannot be checked. The framework maps the null page
into the enclave to protect the application from errors caused by
null pointer references, which could otherwise result in a page fault
that would allow the OS to map it and add malicious data to the
enclave.

3) Communication shield: To implement multi-process abstrac-
tions within an enclave group, the framework requires secure mes-
sage passing, since enclaves are not allowed to share protected
memory. The framework therefore wraps the byte stream used for
the RPC interface in a TLS connection that authenticates the other
enclaves using the attestation mechanism. This allows it to imple-
ment process creation via the fork system call, where an enclave
initializes a new child enclave and then sends its state over the
secured stream.

3.2.4 Limitations. The main limitations are that only a certain
set of operations are supported in the enclave, since the framework
does not yet cover the full functionality provided by the system call
interface with its ABI and libOS. Gramine-SGX requires a trusted
dynamic loader that requires all loaded libraries, which can quickly
lead to an explosion of combinations and includes the aforemen-
tioned vulnerability to compromised library versions Section 3.2.3.

4 EVALUATION OF THE FRAMEWORKS
This section compares the frameworks in terms of TCB size and
performance.

4.1 General Comparison
Both frameworks allow unmodified execution of the application
code, but Gramine-SGX also allows execution of the unmodified
binary through its dynamic linking and loading, while SCONE re-
quires static linking and thus recompilation of the source code.
Gramine-SGX only allows a 1:1 threading model within the enclave
and has no asynchronous system call interface. SCONE also imple-
ments a file system shield to allow persistent storage of enclave data.
Both frameworks don’t implement the full system call interface of
the host OS, most notably the lack of support for the common fork
system call in SCONE.

4.2 TCB Comparison
The TCB numbers of the reviewed frameworks are shown in Figure
5. As can be seen, the total TCB in the enclave for Gramine-SGX
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is about 1,348 thousand lines of code (kloc), but about 1,292 kloc
are due to the included glibc. Only 34 kloc are needed for the OS
library and 22 kloc for the shield. The SCONE framework, on the
other hand, only has a TCB of about 187 kloc, of which 88 are the
musl libc and 99 kloc for the shield. Excluding the differences due to
the included C library, Gramine-SGX has a 44 % smaller TCB than
SCONE. This is mainly due to the nature of the Gramine ABI as a
simpler and more limited interface than the API system call, which
needs to be shielded from the untrusted environment. In addition,
SCONE implements a more sophisticated interface mechanism with
the asynchronous system call and a user-level scheduler.

Since previous work shows [12] that code size, in general, only
affects vulnerability when there is a difference in the size of the
TCB. Thus, security determined by TCB size can be considered
equivalent.
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4.3 Performance Comparison
Using only the surveyed papers as a reference to draw a perfor-
mance comparison is difficult because both papers mostly use differ-
ent benchmark applications to showcase their framework. The only
common measured application is the Apache web server. The multi-
threaded nature of the application, the differences in multi-thread
handling between the frameworks complicate the comparison. On
Gramine-SGX, the Apache server runs with five threads, each oc-
cupying a separate enclave. The SCONE paper doesn’t specify the
number of enclave threads used in the benchmarking, it generally
runs with one thread per core, the use of four threads according to
the specified CPU is assumed. Both frameworks also use different
hardware in their benchmarking, SCONE uses server-grade hard-
ware such as a more powerful Intel Xeon CPUwith hyper-threading
and 64 GB of memory, while Gramine-SGX benchmarks run on
a consumer-grade Intel Core 5 with no hyper-threading and only
8 GB of memory, Therefore, the comparison provided in Figure
5 compares the peak throughput of the server running inside the
framework with the baseline of a native Linux system.

Gramine-SGX’s peak throughput is about 74% of native Linux.
Most of the overhead is due to the enclave transitions required
by the mutual coordination of the instances. Because of this high
coordination overhead, increasing the degree of parallelization by

scaling the number of enclaves can only improve performance up
to a limited number of enclaves, depending on the application.

Using SCONE without the asynchronous system call mechanism
achieves a peak throughput of about 66% compared to the Linux
baseline. The main performance penalty compared to Gramine-SGX
is the avoided enclave transitions due to their higher functionality
implemented in glibc and the libOS. The asynchronous system
call interface improves performance by about 13% to 79% of the
native Linux application, demonstrating the performance benefits
of saving enclave transitions.

5 RELATEDWORK
This section provides a brief overview of other approaches to run-
ning unmodified applications in an enclave and tools for automati-
cally partitioning an application into different privilege levels that
reduce, but don’t eliminate, developer effort.

5.1 Running Unmodified Applications
Panoply [24] is another framework for running an unmodified ap-
plication in an enclave context. Its main goal is to reduce the TCB to
make it possible to formally verify the correctness of trusted code
in the enclave. To do this, it provides the POSIX API as its external
interface, allowing it to implement only a very thin intermediate
layer in the enclave, shielding the application and eliminating the
need to include a C library. Haven [4] takes a similar approach to
Gramine-SGX by using the Drawbridge library OS built for Win-
dows to allow legacy applications to run in the enclave. Compared
to Gramine-SGX, the Haven library OS has a significantly higher
TCB of millions of lines of code, which greatly increases the attack
surface and results in higher memory requirements for the enclave.

5.2 Automatic Privilege Separation
The approach used in Glamdring [16] is to place only the functional-
ity of the application that handles sensitive data in the enclave, thus
reducing the TCB. The framework then performs static dataflow
analysis and static backward slicing to identify all of the functions
that handle the sensitive data that the developer has to annotate.
It then automatically extracts the code and generates an interface
at the enclave boundary that protects and verifies the sensitive
data. EnclaveDom [17] is an in-enclave privilege separation system
using the Gramine libOS. It divides an enclave into multiple isolated
memory areas annotated by the developer to restrict direct access
to sensitive data for potentially vulnerable third-party libraries.

6 CONCLUSION
Intel SGX provides security for code running inside the enclave
against a malicious environment and shields the data it handles.
To extend this security benefit to legacy applications, the enclave
requires a runtime environment. This paper summarizes and com-
pares two approaches to implementing such an environment: SCONE
uses the container abstraction as an intermediate layer and inter-
faces with the environment via a shielded system call interface.
Gramine-SGX runs a library OS inside the enclave and interfaces to
the environment via a custom ABI with a more restricted interface.
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