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ABSTRACT

Intel Secure Guard Extensions is a hardware feature available to
Intel processors that provides a trusted execution environment fit
for remote computation. It enables the creation of secure enclaves,
handled by the trusted processor, that are isolated from all other
software including the host’s system software. They also provide
means for users to remotely attest the legitimacy of the enclaves.
The mechanisms that were developed to achieve this will be pre-
sented in this overview.
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1 INTRODUCTION

Today, software is commonly deployed on remote computers not
owned by a trusted party, like in Infrastructure as a service envi-
ronments such as Amazon Web Services. Such an untrusted party
can attempt to steal sensitive data from platforms they have access
to. These developments come with considerable security risks since
the remote computer is owned by an untrusted party. The use of
such services has become so widespread that the need for a way
to trust the remotely running code and the integrity of remotely
stored secrets has brought new technologies to life.

Intel Secure Guard Extensions (SGX) is a set of hardware exten-
sions for x86 systems Intel has developed with the aim to enhance
the security of sensitive data and applications in environments
with untrusted system software. Even on compromised systems,
the Intel processor as a trusted component enables the concept of
an "enclave", a memory region isolated from all other software that
cannot be accessed without explicitly being allowed by the trusted
hardware to do so [10]. SGX’s trusted computing base is limited
to only the processor’s microcode and the code running in a few
special enclaves [8]. SGX enclaves can be remotely attested to be
working correctly before receiving their sensitive data and code
through the use of cryptographic signatures with Intel-specific keys
[14]. Multi-core processors are fully supported in SGX enclaves (8]
to keep performance high for complicated computations.

With SGX being available in consumer processors from Intel’s
6th generation in 2015 up until the 10th generation and on Intel
server processors since 2015, SGX has established itself as a main-
stay in security. It provides a new standard for secure applications
that can and is being expanded upon to bring its security to more
applications. Intel’s focus on making it simple to integrate SGX
into an existing application has resulted in widespread adoption by
security sensitive software.

2 BACKGROUND

In this section, the background concepts that SGX builds upon are
introduced.

2.1 Software Privilege Levels

In x86 architecture, software typically runs in four privilege levels,
from ring 0, the most privileged, to ring 3, the least privileged. Any
privilege level is strictly more powerful than the levels below it,
allowing software to read or write data at those levels [9]. When
user applications, which run at ring 3, require services of more
privileged software, like accessing privileged memory, they need to
call well defined functions that switch the privilege level internally.
Software can not be allowed to freely switch privilege levels to
uphold security standards expected by modern applications. [8]

SYSCALL is the primary instruction software on modern proces-
sors can call to use ring 0 code. A SYSCALL jumps into ring 0 code
at a location defined by special model specific registers, referred to
as system call handler, which cannot be accessed outside of ring 0
code. SYSRET then switches the privilege level back and continues
the execution of ring 3 code [10].

2.2 Threat model

The adversaries SGX aims to protect against include an unprivileged
software adversary, a system software adversary and a startup code
adversary [4].

The unprivileged adversary or "ring-3" attacker is limited by
the privileges granted to him by system software. He can only
execute ring-3 instructions and perform read or write operations to
memory mapped with read or write permissions given by system
software [4]. The system software attacker is in control of the
operating system and can read or write to all available memory.
This malicious actor is capable of scheduling code execution as
well as executing a potentially malicious SGX enclave [4]. The
startup code adversary has compromised the BIOS and as such, has
full control over the platform during startup and is able to modify
registers that are exclusive to the system management mode [4].
A potential attacker in SGX’s adversary model has full physical
access to the platform the enclave is running on and as such, is able
to see and store all changes to the DRAM.

Importantly, this list of threats does not include a side-channel
adversary, who is able to evaluate various statistics about the pro-
cessor to draw conclusions about the software being executed. Some
of these statistics include the power draw of the processor, cache
misses, branches and DRAM accesses [4]. Availability threats like
denial of service attacks are not covered by SGX, as an attacker
with physical access to the platform can shut it down at any time.

3 ARCHITECTURE

A Intel SGX Enclave resides in an environment isolated from un-
trusted software and hardware. Its mechanisms protect the integrity
of the code and the data inside the enclave while keeping the pro-
cess of implementing SGX into applications for developers as simple
as possible. This chapter summarizes the mechanisms in place that
allow SGX to fulfill those goals.



3.1 Memory Layout

Intel SGX enabled processors store all data relevant to enclaves in
the Processor Reserved Memory (PRM). This memory is a portion of
DRAM not accessible to other software including system software.
Even if the DRAM were to be removed and read out on another
platform, the contents of the PRM would not be leaked as they
are encrypted with a key stored directly in the processor. This key
changes every power cycle to reduce consequences in case it is
compromised [10]. The processors memory controller protects the
data from being accessed by peripherals by denying direct memory
access attempts into the PRM [10].

Utilizing the regular page tables that applications use would
come with major security flaws, which is why SGX uses the Enclave
Page Cache (EPC). The EPC resides within the PRM, restricting
access even for system software. Inside the EPC, memory is split
in pages of 4 KB in size, each of which can only be assigned to
one enclave at a time [10]. A EPC translates a virtual address to a
physical memory address similarly to regular page tables.

The EPC can only be accessed from inside an enclave, which is
why the same SGX instruction handles page allocation and page
initialization, usually consisting of copying from a regular page [8].
Because the untrusted system software allocates the EPC pages to
enclaves, the trusted hardware needs to check that the EPC entries
are not allocated incorrectly. For this reason, the processor keeps
a record of allocations for each EPC in the Enclave Page Cache
Map (EPCM). If access to any EPC is requested from unauthorized
software, the processor will issue a fault and deny access [8].

An entry in the EPCM consists of a valid bit that is set to 0 for
unallocated pages and to 1 for all others and 8 bits specifying the
page type which are set upon allocating and initializing the enclave
[10]. Depending on the type, the page stores an enclave’s code
and data or a special SGX data structures like the SGX Enclave
Control Structure. The identity of the enclave owning the entry in
the EPCM is also stored inside it, making it possible to prevent an
enclave from accessing other enclaves pages and their data [8].

3.2 SGX Enclave Control Structure

The SGX Enclave Control Structure (SECS) is an assortment of meta-
data about one specific enclave. An enclave’s SECS is the primary
form of identification used by SGX. An enclave’s SECS is stored in
a dedicated EPC page with a dedicated page type associated with it.
The enclave identifying information in an EPCM entry is a pointer
to the enclave’s SECS [8], making it and its contents one of the
most important aspects of SGX’s architecture.

A SECS contains the identities MRENCLAVE and MRSIGNER, as
well as SSAFRAMESIZE. MRENCLAVE is a measurement of the en-
claves startup environment used to identify contents of an en-
clave and MRSIGNER is a measurement of the "Sealing Authority".
SSAFRAMESIZE specifies how many pages are used to store the con-
text in an enclave’s State Save Area (SSA). It also contains a value
of BASEADDR, SIZE, the ATTRIBUTES associated with the enclave, as
well as the enclave’s product ID ISVPRODID and its security version
number ISVSVN [8].

The security version number can distinguish two enclaves even
if the product ID, MRENCLAVE and MRSIGNER are the same value.
This concept allows SGX developers to perform security patches
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Figure 1: Simplified Lifecycle Of A SGX Enclave

for compromised enclaves by releasing a version of their product
with a higher security version number. SGX will deny any attempt
to migrate data from an enclave to another one with the same value
of SVNPRODID and MRENCLAVE, but a lower version value in ISVSVN.
This means that after a user has upgraded and the data has been
migrated to the new version, attacks based on the old vulnerable
enclave will cease to work [8].

3.3 SGX Thread Control Structure

SGX provides full support for multi-threading, allowing multiple
threads to work on the same code of the same enclave at the same
time [8]. To achieve this, SGX uses the Thread Control Structure
(TCS), one for each logical processor working on the code of an
enclave [10]. Similar to the SECS, a TCS is stored in a EPC with a
specific page type.

The contents of a page of this type can only be directly read
by SGX instructions or special debugging instructions [10], which
will not be enabled during normal use. The TCS’s contents contain
addresses for context switching in or out of the enclave. The entries
specify the address to be loaded into Thread Local Storage and the
value loaded in the instruction pointer, specifying exactly where
and with what data a thread starts executing code inside an enclave

(8].

3.4 Enclave Lifecycle

As seen in Figure 1, a SGX Enclave starts to exist when ECREATE
is called by an application, allocating an unused page in the EPC
for the SECS of the new enclave. ECREATE also ensures that the
values used for initializing the SECS are valid, allowing all SGX in-
structions that are called later to assume the values in the enclave’s
SECS are correct [8]. At this time, the enclave can load necessary
code, data and TCS pages.

When the enclave is fully prepared, EINIT sets the enclaves SECS
to be initialized, prohibiting further loading of data and allowing it
to be executed [8].

An application can call EREMOVE to destroy an enclave by free-
ing the EPC page storing the enclave’s SECS. It will however only
do so if the SECS page is not referenced by any other EPC page,
making this the final step in destroying an enclave. Before this, all
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other EPC pages relevant to the enclave are set to no longer be
a valid page, which also marks them ready for a new allocation.
EREMOVE checks that no processor is currently executing code in
the EPC pages before freeing them, blocking any attempt to destroy
an enclave while it is in use [10].

The details of the process of entering and exiting the enclave is
vital to SGX’s security guarantees, which are discussed now.

3.4.1 Entering An Enclave

EENTER sets the currently active thread into enclave mode, allowing
it to access the standard EPC pages owned by the enclave the thread
is working on. EENTER does not change the privilege level, meaning
that the enclave code is executed at ring 3, the same privilege level
of the application that uses the enclave [11]. This feature prevents
potentially malicious enclaves from damaging the host platform
more than a regular user application, since they share the same
privilege level [8].

While in enclave mode, hardware breakpoints and other debug-
ging features of the processor which would allow leakage of the
enclave’s data are disabled [8]. EENTER requires that the TCS used
as its argument is not already in use and that the TCS still has one
or more State Save Areas marked as available. This SSA will be
used in the case of an Asynchronous Enclave Exit (AEX), which is
detailed in subsection 3.4.2. EENTER loads data from the segment
register specified in the TCS and ensures that the enabled architec-
tural features are exactly as detailed in the enclave’s ATTRIBUTES
by setting the associated register [8]. Additionally, similarly to a
SYSCALL, EENTER backs up the old values of all edited registers to
allow restoration of the state after the enclave is exited again.

ERESUME works very similar to EENTER, with the important
difference being that EENTER requires a SSA to be completely empty
while ERESUME works with a SSA that has been changed by an
AEFX, failing if the State Save Area is empty [10].

3.4.2 Exiting An Enclave

The processor stores the state of a thread when it leaves the en-
clave in special secure memory called State Save Area. This allows
hardware exceptions to function while a thread is executing code
inside an enclave while still maintaining adequate security and
prohibiting system software from reading the enclave’s data.

SSAs are pointed to in the TCS pages, each SSA using as many
pages as the value of SSAFRAMESIZE within the enclave’s SECS
dictates [8]. The TCS specifies the virtual location of the first SSA
for that TCS as well as how many SSAs the TCS supports [10].

EEXIT only functions while the thread calling it is in enclave
mode and sets it to not be in enclave mode anymore while loading
the values stored by EENTER back into their associated registers.
It does not clear the registers used by the enclave’s code meaning
that enclave developers need to properly remove any traces of data
that they used [8].

In the scenario that the thread needs to exit the enclave’s code
without calling EEXIT itself, like an interrupt, it is important to
not call the regular system software exception handler immediately
like most applications would do since that handler is not trusted.
For this reason, the processor executes a special AEX [10]. The AEX
saves the complete state of the thread executing the enclave’s code
in its SSA, marking it as used, and restores the information backed
up by EENTER. To prevent the system software from accessing

secrets, all registers relevant to the enclave are cleared [10]. After
the system software is done handling the exception, the thread will
jump into an asynchronous exit handler inside the process that also
hosts the enclave. It is expected for this handler to then continue
execution of the enclave by calling ERESUME [8].

3.5 Enclave and Sealing Identity

To provide identities for attestation and sealing, every SGX enclave
has two measurement registers, which only the trusted computing
base has write access to. MRSIGNER provides the authority’s identity
and MRENCLAVE provides the enclave’s identity.

MRENCLAVE is the measurement of the environment an enclave
was initialized in, being the contents of the pages, the position of
the pages in the enclave and all page-associated security flags [12].
The information resides in the register in the form of a SHA-256
hash. The value of MRENCLAVE is immutable after calling EINIT.

MRSIGNER is used to store a signed key of the "Sealing Authority".
The "Sealing Identity" that is used to provide data integrity contains
a version number, a product ID and the Sealing Authority, the entity
that signs the enclave beforehand [3]. The Sealing Authority, usually
the enclave builder, provides the hardware with a signed enclave
certificate including the public key of the Sealing Authority as
well as the expected value of MRENCLAVE [4]. The trusted hardware
can then confirm that the value of MRENCLAVE is as expected by
comparing the two. Only if this check passes, the SECS of the
enclave will be filled with the values of the certificate and the
public key provided by the Sealing Authority will be hashed and
stored in MRSIGNER [8].

3.6 Sealing

When a SGX enclave exits, it is destroyed entirely as discussed in
subsection 3.4.2. If a SGX developer wants to retain data even after
an enclave is removed, special sealing instructions are required
to ensure that the data is kept safe. For this purpose, EGETKEY
provides access to a "Sealing Key" which can encrypt enclave data.
Later, the sealed data can be decrypted by another call to EGETKEY.
In combination with additional measures offered by Intel SGX plat-
form services [7], such as monotonic counters, this process can be
protected against replay attacks [3].

EGETKEY requires a policy which decides what enclaves will
later be able to decrypt the sealed data. The two policies decide
between sealing to the Enclave Identity or the Sealing Identity.

Sealing to the Enclave Identity means the key used to encrypt
the data is a result of the calling enclave’s value of MRENCLAVE.
This policy creates a different sealing key for every enclave, as any
change of MRENCLAVE will lead to a different sealing key. As such,
data sealed to the Enclave Identity can only be unsealed by this
exact enclave, even after the enclave is destroyed and created again.
This policy proves useful if there will be scenarios in which the
SGX developers does not want data to be reused after an update,
like authentication tokens [3].

When using the policy to seal to the Sealing Identity, the key
is instead influenced by the enclave’s MRSIGNER and ISVSVN value.
Since MRSIGNER represents the Sealing Identity, multiple enclaves
signed by the same authority are allowed to decrypt data that was
encrypted by others [3].



ISVSVN contains the security version number, which should dif-
fer from the product version number. Careless increments of the
security version number could reach the maximum of 65,536 com-
binations the 2 bytes allocated for ISVSVN can represent [8]. This
value should only be updated if a security vulnerability has been
addressed in the update.

The Seal Key is related to a specific security version number
which the enclave can choose upon calling EGETKEY. Enclaves
with a ISVSVN value lower than what was used to seal the data
will not be allowed to decrypt it. On the other hand, an enclave
with any security version number higher than what the data was
originally sealed with is allowed to decrypt it. This policy allows
updated versions to seamlessly continue unsealing data which will
become unavailable to outdated versions once it is resealed with a
higher security version number [3].

To prevent the access of an entire platforms secrets when it
changes ownership, SGX includes a register called ONNEREPOCH. The
value of this register is always part of the key derivation process
offered by EGETKEY [8]. During normal use, it can be ignored. Since
changing the value of OWNEREPOCH leads to different key results in
EGETKEY without changing any functionality of a enclave [3], this
register presents the mechanism to make all secrets on a platform
unavailable without the need to remove them. This is especially
helpful when ownership of a platform changes only temporarily
like in the case of hardware maintenance. Simply changing the
value of OWNEREPOCH back to its old value will immediatly make all
secrets stored on the platform available again [3].

3.7 Attestation

SGX offers attestation that allows a remote computation service
user as well as other enclaves on the same platform to confirm
that the software has been correctly instantiated on the remote
computer. An attestation contains the identity of the software that
is being attested, details of all non-measurable states, like the mode
of the running software, as well as data associated with the software
and a cryptographic signature representing the trusted computing
base [18].

3.7.1 Local attestation

SGX enclaves are able to communicate with each other e.g. in order
for developers to be able to construct a higher level protocol for
which one application using SGX is not sufficient. The EREPORT
instruction is used for authentication purposes between two SGX
enclaves. When called, EREPORT creates a REPORT structure which
consists of a message by the enclave, its ATTRIBUTES set during
ECREATE, the values of MRENCLAVE and MRSIGNER and a message
authentication code (MAC) [8]. The MAC is a cryptographic bind-
ing over the REPORT calculated with a symmetric "Report Key".
Importantly, this key is shared between the enclave receiving the
REPORT and the processor via EREPORT [3]. Thus, a REPORT is spe-
cific to exactly two SGX enclaves and will not be valid if it reached
a different, third enclave.

After communication through an untrusted channel has been
established, Enclave B can send its MRENCLAVE, as shown in Figure
2. Enclave A passes this value to EREPORT, which will then be able
to sign the REPORT’s MAC with Enclave B’s report key. Enclave
A then sends the REPORT over the untrusted path [3]. Enclave B
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can now call EGETKEY and recalculate the MAC that came with
the REPORT to confirm that it has not been tampered with and that
Enclave A is running on the same platform as Enclave B. At this step,
Enclave B can read the values of MRSIGNER to confirm Enclave A’s
sealer’s identity and MRENCLAVE to learn which software is running
in Enclave A, as well as pass it on to EREPORT [8]. This REPORT will
be sent to Enclave A, which can then also confirm that both enclaves
are running on the same platform, establishing trust between the
two.

3.7.2  Remote attestation

Remote attestation allows a party to be confident that the expected
software is running inside a SGX enclave. It can be performed as
soon as the enclave is instantiated. At this time, the enclave and
the service provider will set up an authentication token, which
the enclave will store in its encrypted state. The key used for this
encryption, the "Seal Key", is unique to the enclave on the specific
platform and the trusted computing base. The sealed authentication
token can be used to confirm that the trusted computing base did
not change after an application restart [14].

SGX provides a special enclave, called Quoting Enclave, which
handles remote attestation via asymmetric cryptography. The Quot-
ing Enclave gathers local attestation REPORTs of SGX enclaves and
creates a signature using Intel Enhanced Privacy ID (EPID), Intel’s
extension to the Direct Anonymous Attestation algorithm [18].
EPID signatures are completely anonymous, even to Intel. As an
alternative to EPID, Intel offers Data Center Attestation Primitives,
which are further discussed in subsection 3.7.4.

Figure 3 showecases the procedure of a standard remote attesta-
tion using SGX with the Quoting Enclave. After a remote challenger
requests attestation about the SGX enclave from the user applica-
tion hosting the enclave (1), the hosting process passes the request
on towards the enclave together with the MRENCLAVE value of the
Quoting Enclave (2) [18]. The enclave then creates a local attes-
tation with the Quoting Enclave acting as the target enclave and
sends it to the user application (3), which passes it to the Quoting
Enclave (4). The Quoting Enclave then confirms the correctness
of the REPORT by recalculating the MAC as discussed in subsec-
tion 3.7.1 before signing it using EPID [14] and sending it back to
the user application (5). The remote challenger then receives the
remote attestation (6) and can verify it through communication
with the Intel Verification Service (7, 8) [8]. Now, the remote chal-
lenger has successfully confirmed that the enclave has correctly
been instantiated.

The EPID private key used by the Quoting Enclave to sign a
remote attestation is a product of the Root Provisioning Key of
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Figure 3: Remote Attestation Example adapted from [18]

the processor and a Intel provisioned secret. The generation of
the private key takes place inside a special Provisioning Enclave
[14]. The Provisioning Enclave receives a Provisioning key from the
processor and then uses this key to aquire an attestation key used for
remote attestation from Intel. The attestation key is then encrypted
using a special key accessed with EGETKEY called Provisioning
Seal Key. When the Quoting Enclave creates a remote attestation,
it decrypts the attestation key using the Provisioning Seal key via
EGETKEY, replaces the MAC with a signature created with the
attestation key and re-encrypts it [8].

EPID group signatures have the unique property of being com-
pletely anonymous, even to the group issuer itself. This means it
is impossible for any entity to determine which keys were used in
the creation process of the signature [14].

Two distinct signature modes are supported by EPID: Random
Base Mode and Name Base Mode. In Random Base Mode, the sign-
ing entity chooses a random base for every signature, making it
impossible to verify later that all its signatures were done by the
same signer with the same key. In Name Base Mode, the signer
picks a base to use for all its signatures, which means it is possible
to link all its signatures together [14].

The information gained by generally using Name Base Mode
can be used in order to minimize the impact of compromised keys.
To showcase this, consider a party using SGX remote attestation
to authenticate login tokens. If an EPID key is compromised, the
adversary can use it to sign any number of malicious logins. In
Random Base Mode, it is not possible to distinguish the malicious
logins from valid ones. In Name Base Mode however, the party
using SGX can check if the logins were signed using the same
key. This makes it possible to categorize a suspicious amount of
logins signed by the same key as malicious and revoke all logins
that used the compromised key. In addition, the party can find out
which customer originally used the now compromised key and
notify them that their platform has most likely been infected with
malware. For this reason, it is recommended to generally use Name
Base Mode [14].

3.7.3 Revocation
Intel uses the fact that they have a list of public keys for revocation

purposes. EPID provides similar revocation methods to traditional
signing algorithms like RSA with some distinct differences [14]. In
Name Base Mode, it is possible to revoke all signatures performed
by a signing entity. Intel also provides a form of signature based
revocation with EPID regardless of the Mode used.

If Intel’s revocation authority receives a signature that is deemed
suspicious enough to revoke, it is added on the signature revoca-
tion list. This does not simply revoke the one signature, but has the
effect of revoking all signatures created by the same key as the com-
promised signature [14]. Any attestation calculates a "non-revoked
proof”, a little documented process that attests to the verifying party
that the attesting platform did not generate a specific signature
on the signature revocation list. This process is repeated for every
entry on this list [14].

3.7.4 Data Center Attestation Primitives

When deploying SGX at a large scale, like in Data Centers, it is
often impractical for every platform to regularly communicate with
Intel directly. For cases such as offline environments, entities that
outsource trust decisions and others, Intel Data Center Attestation
Primitives provides infrastructure that allows third parties to locally
certify Quoting enclaves while still maintaining the certificate chain
that leads to Intel [18].

To achieve this, Intel offers a special enclave called the Provision-
ing Certification Enclave (PCE). This enclave works with two values
available via EGETKEY. The first is the Provisioning Certification
Key (PCK), which is unique to the current trusted computing base.
The second is the Platform Provisioning ID, which is only unique
to the platform [18].

As there will not be continuous contact with Intel, the Quoting
Enclave used in this scenario does not use Intel’s EPID, but instead
uses Elliptic Curve DSA encryption. This form of encryption does
not need a confirmation from a back-end server to be certified as
being valid. The local Quoting enclave can request certification
by providing the PCE with the attestation public key. The PCE
then signs a certificate that identifies the Quoting Enclave and
the attestation public key with the PCK. Intel publishes certificate
revocation lists in all Intel platforms, completing the certificate
chain [18].

4 DEVELOPMENT EXPERIENCE

Developing an application that uses SGX requires Intel’s SGX soft-
ware development kit (SDK), which is available for download for
Windows and Linux operating systems [1] [2]. SGX enabled hard-
ware includes most Intel Core processors released between 2015
and 2020 as well as most server processors released since 2015. The
Linux kernel supports SGX instructions in release versions 5.11 and
newer [2].

Due to the storage size limitation in the PRM, it is recommended
to keep the space used by enclaves as low as possible [10]. This
means additional work for developers who have to partition an
application to keep the security sensitive part running inside a SGX
enclave small. This step needs to be done manually, preventing
developers from porting existing applications into SGX in bulk.

Releasing a product that includes the use of SGX enclaves also
requires whitelisting from Intel directly. This includes the need to
sign a Commercial Use License Agreement with Intel [13], only



then will Intel allow a new signer to be added to the SGX Whitelist.
This process allows Intel to effectively control what entities are
allowed to use the SGX technology, which has been a reason for
criticism [8].

5 RELATED WORK

Previously, the problem of trusted code execution has been tackled
by other works like Flicker [16]. Flicker boasts an exceptionally
small trusted computing base with only as few as 250 lines of code
while also providing remote attestation features and protection
against a malicious BIOS or operating system. It differs from SGX
as it stops all code execution while a sensitive piece of code is
executed [16]. This creates a large performance overhead especially
on multi-core processors where SGX excels.

SGXoMeter [15] has presented a standardised tool for bench-
marking performance of SGX. For large data sizes, the performance
overhead created by SGX generally becomes negligible. For smaller
sizes, different versions of the SGX SDK perform noticeably dif-
ferent, trending towards lower performance. This might be due to
the additional mitigation features to protect against certain attacks
that were patched in the newer versions of the SGX SDK [15]. Ver-
sion 2.12 of the SDK decreased the performance of the SHA-256
algorithm by a factor of about 10 [15].

As SGX provides a baseline of enclave systems, many projects
have improved by implementing the use of SGX enclaves with
relatively small performance losses and great security gains. One
of these projects is SecureKeeper [6], which was developed as a
version of the coordination service Apache ZooKeeper with SGX
implementation. ZooKeeper is a service that provides its users tol-
erance of crashes by offering several replicas that are all connected
[6]. SecureKeeper takes the design of ZooKeeper and implements
multiple enclaves which guarantee that the user data will always
be encrypted while keeping all regular functionality and a similar
performance overhead to using secure channels instead [6].

SGX has not proven to be infallible, as numerous exploits are
described in [20]. It is possible for an attacker to infer sensitive data,
e.g. by tracking accesses to pages. As Xu et al. [21] have shown,
page accesses can be monitored by unmapping pages, causing a
page fault when a enclave attempts to access them. Developers are
also still responsible to protect their application against memory
corruption attacks like buffer overflows. Especially in an environ-
ment constructed to handle sensitive data, bugs such as these are
prime targets for attackers [20].

SGAxe [19] shows how transient execution attacks can abuse
false branch predictions and speculative execution done by proces-
sors leading to the leakage of sensitive data, including the suppos-
edly secure data inside a SGX enclave. PlunderVolt [17] details how
fault injection attacks by controlling the processor’s voltage can
target EREPORT and EGETKEY in order to extract cryptographic
keys.

In the case of an architectural bug like in the case of the Zpic
leak [5] in which an attacker with administrator permissions can
leak data from the processors cache, SGX is as vulnerable as other
software, especially since it is very common for an attacker to have
physical access to the platform in SGX’s adversary model.
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6 CONCLUSION

Intel SGX provides a system that allows data to be securely com-
puted with and stored on remote platforms within an enclave in
the processor. As the processor is trusted hardware, even compro-
mised operating systems cannot simply get access to the secrets
kept inside a SGX enclave. This combined with the relative ease of
implementing SGX into existing applications makes it an appealing
solution to parties that commonly use remote computation services.

While SGX does not provide security guarantees in every way,
most significantly to side-channel attacks, it is a major improve-
ment in security functions for many parties with often reasonable
performance trade-offs.

SGX has shown to lay a promising foundation for the future of
security in applications with many projects being built upon SGX
as the groundwork.
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