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ABSTRACT
For isolating security-sensitive code from an untrusted environ-
ment, it has become common to make use of trusted execution
environments (TEEs). Software running inside such an environ-
ment is isolated from the potentially compromised host system,
making it possible to shield security-sensitive applications from
malicious underlying software. Keystone is a software-based TEE,
designed to be flexible and highly customisable, unlike hardware-
based solutions that cannot be changed once implemented. This
review will explain the way Keystone functions and what features
it can offer to its users and TEE developers.

1 INTRODUCTION
The tremendous code sizes of the common general-purpose operat-
ing systems can pose a great security risk when executing highly
security-sensitive programs. Ruling out security flaws inside an op-
erating system becomes increasingly difficult the more complex the
system is. So-called trusted execution environments (TEEs) have
been introduced to address the issue of having to trust complex
host systems when running security-sensitive code. Utilising a TEE,
critical code can be executed in isolation of the host, making attacks
through the host system unfeasible, even if it has been compromised
in an arbitrary way. Keystone [11] is one such TEE implementation,
suited for creating so-called enclaves on RISC-V based platforms
that sensitive software can be executed in. In contrast to common
hardware-based TEE implementations, Keystone is designed to be
freely customisable and not be tied to constraints imposed by the
hardware designer. Keystone aims on full flexibility on the enclave
developer’s side, making it possible for the developer to thoroughly
fit the TEE to a certain use case. As a result, Keystone should be
regarded as a TEE architecting framework rather than a fixed TEE
implementation.

Keystone’s source code is publicly available [5], providing de-
velopers with a base TEE implementation, yet allowing them to
customise it in any way possible. As a software-based solution,
Keystone does not require any changes made to the underlying
hardware, given that the minimum hardware requirements to em-
ploy Keystone are satisfied.

This review aims on giving insights into Keystone’s inner work-
ings, its applicability and its flexibility. Keystone’s hardware require-
ments, the way Keystone works, what features it offers, how it is
used and how it can be extended are all covered in detail throughout
this work.

2 BACKGROUND
In order to understand how Keystone works, basic knowledge of
the RISC-V instruction set architecture (ISA) and the necessary
RISC-V Standard Extensions is required. To provide the necessary
background information, this section will explain some RISC-V
fundamentals.

2.1 The RISC-V Instruction Set Architecture
RISC-V is a modular ISA, consisting of an integer base and various
standard extensions [14]. Per the RISC-V specification, the integer
ISA has to be implemented, as it comprises the basic instructions
and registers needed to perform even primitive computing opera-
tions in the first place. However, standard extensions like the ones
needed for multiplication and division or floating-point operations
need not necessarily be implemented to achieve RISC-V conformity.
A hardware manufacturer may thus choose to only implement the
base integer ISA and nothing else, or to include certain standard ex-
tensions, or to even implement own custom extensions that are not
covered by any RISC-V specification. This leads to a very heteroge-
nous hardware supply, with suitable hardware implementations
being available for each use case. Keystone as one such use case
also requires a certain set of implemented standard and custom
extensions, as outlined in the following.

2.2 Privilege Levels
In order to provide for isolation between an operating system (OS)
and user applications, RISC-V defines a privilege level scheme con-
sisting of three different privilege modes [15]. Each privilege mode
is able to access different control and status registers (CSRs) in order
to modify the state of the machine. CSRs are used among others to
perform actions like servicing interrupt requests, managing virtual
memory or restricting physical memory access.

TheM-mode (machine mode) is the most privileged mode, able to
access all CSRs. It is used for execution of bootloaders and security-
sensitive interrupt handling that requires full permissions.

The S-mode (supervisormode) is less privileged, yet able to access
andmodify a fair amount of supervisor CSRs. Software running in S-
mode is able to perform virtual memory management and to service
interrupt requests that are delegated from M-mode. Therefore, the
S-mode is highly suitable for kernel execution.

The least-privileged U-mode (user mode) is used for user appli-
cations that are supposed to run in isolated address spaces and be
scheduled preemptively by a supervisor. In scenarios where there
is no supervisor, the U-mode can be used to restrict applications
from modifying or observing certain system state.

Not all modes need to be implemented by a hardware provider.
The only mandatory privilege level is the M-mode (implying no
privilege separation at all), while U-mode and S-mode are optional.
However, Keystone requires that all three modes be implemented.

2.3 Binary Interfaces
Ordinarily, applications can interact with the OS via a system call
interface. The user application can invoke a system call that is
serviced by the OS. In terms of RISC-V privilege levels, system calls
act as an interface between S-mode and U-mode. Similarly, there
exists another such interface between S-mode and M-mode, called
the supervisor binary interface (SBI). Software running in S-mode
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can call M-mode routines via the SBI in the same way a U-mode
application can issue a system call to the OS. RISC-V specifies a
standard SBI [9], implemented e.g. by the OpenSBI software [7].

2.4 Physical Memory Protection
RISC-V physical memory protection (PMP) is an optional (but re-
quired by Keystone) standard extension that enables M-mode soft-
ware to restrict S-mode and U-mode memory access. In M-mode,
specific PMP CSRs can be written to in order to designate physical
memory regions that cannot be accessed by the less-privileged
modes. These CSRs have different priorities, such that a high-
priority PMP entry can specify that a region must not be accessible,
even if said region is contained within a memory region whose
access is allowed by a lower-priority PMP entry. Any region not
covered by any PMP entry is unaccessible by S-mode and U-mode.

2.5 Virtual Address Spaces
In addition to the constraints imposed by PMP on S-mode and
U-mode, RISC-V offers a standard extension to support virtual
address spaceswith paging [15]. Page tables aremanaged by S-mode
software in order to spatially isolate user applications from each
other and the rest of the system. AlthoughM-mode software cannot
use virtual addresses (memory is always addressed by physical
addresses in M-mode), it can freely inspect and modify any paging
structure and even swap root page tables arbitrarily. Providing
means to enable paging is optional for a hardware platform, and
although Keystone does not conceptually rely on it, the reference
implementation [5] expects paging to be enabled.

2.6 Root of Trust
Basic TEE functionalities include attestation and data sealing. Attes-
tation refers to the proof towards a possibly remote verifier that the
system is running in a defined state, i.e. that the enclave is properly
loaded and has not been tampered with. Data sealing describes a
feature that enables software in an enclave to persistently store
data without the possibility of any software outside the enclave to
observe or modify its contents.

To make these features available, the lowest-level M-mode Key-
stone module (described in Section 3.2) must be hashed and signed
by tamper-proof software or hardware before being executed. Such
a mechanism is referred to as the root of trust (RoT) and is among
the first things to be done after system reset. An RoT is commonly
needed with TEEs to be able to establish a chain of trust. As all
code that an enclave depends on must be trusted, there is a need
for some inherently trusted component, i.e. a root of all trust.

Keystone itself provides no such means, as it is the hardware
manufacturer’s responsibility to provide an RoT to the system.
Additionally, the RoT must provide Keystone with an asymmetric
key pair, signed by the RoT itself. The RoT can be implemented as
an unmodifiable zeroth-order bootloader that has exclusive access
to a hardware provided private key.

As there is no RISC-V specification addressing RoTs, a custom
extension specified by the platform provider is necessary.

EnclaveHost

HA eapp

D
OS RT

Security Monitor

Hardware

Figure 1: The architecture of a Keystone system. As indicated
by the solid arrows, all communication between the host and
the enclave is managed by the security monitor. Components
shown in the figure include the runtime (RT), eapp (applica-
tion running inside the enclave), host application (HA) and
host driver (D).

3 KEYSTONE FUNCTIONALITY
In this section, the structure of Keystone is discussed, along with
how Keystone operates, what it is capable of and what adversaries
it offers protection against.

3.1 Adversary Model
Through the use of PMP, Keystone can protect an enclave from an
attacker capable of arbitrarily controlling the host OS, host applica-
tions and other enclaves. Additional custom hardware extensions
offer further protection against a physical attacker able to read
and modify DRAM contents and against shared-cache side-channel
attacks. Denial of service carried out by the host (i.e. the preemptive
destruction or ceased resumption of the enclave) cannot be pro-
tected against with Keystone. A Keystone enclave can also utilise
host system calls, as outlined in Section 3.9, and may therefore be
susceptible to attacks making use of the system call interface. Lee
et al. mention in [11] that such attacks can be countered by known
defenses. As the host controls an enclave’s life cycle and is well able
to measure time spent with enclave execution, it may be able to
carry out timing attacks. An analysis of such attacks and possible
countermeasures is not straightforward and therefore out of this
work’s scope.

3.2 Architecture
Keystone consists of three main modules that constantly work
together to allow enclave operability. While there is a publicly
available implementation of each module [4, 5], Keystone allows
for great customisation to the extent of even creating completely
custom modules. The modules’ source codes can easily be modified
to better suit a Keystone user’s requirements and the hardware
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that a Keystone instance should be employed on. In the follow-
ing, all three modules are described in detail. An overview of the
components and their interactions is shown in Figure 1.

The security monitor (SM) is fundamentally important for how
Keystone works, as it is the only component operating in M-mode.
It is responsible for ensuring that neither the OS nor the enclave
can observe or manipulate each other. The SM mainly functions
by restricting physical memory access to either the host or the
enclave, whichever is running at a given moment. Additionally, the
SM extends the system’s SBI to offer enclave management services
to both the host and the enclave, as shown in Section 3.4.

The runtime is responsible for servicing applications inside the
enclave (eapps). It acts as a supervisor to these applications, offering
system calls, memory management and SM communication via the
SM’s SBI. The reference runtime implementation is called Eyrie [4]
and offers basic kernel functionality. Modifying Eyrie or coming up
with other runtime implementations may be useful to better tailor
the runtime to an eapp’s requirements, as shown in Section 4.1.

The host driver enables the host application to create an enclave
and have it executed. While there is no reason why Keystone func-
tionality could not be an integral part of the host OS (given that
one could develop a supervisor specially designed for Keystone),
current kernels do not offer such features and have to be retrofit-
ted to support Keystone. There is a reference implementation of a
Linux driver, supplementing Linux with Keystone capabilities. The
driver will setup, launch and destroy enclaves at request. In order
to achieve this, it has to communicate with the SM via SBI calls.

3.3 Startup
On system startup, the SM’s binary has to be loaded and subse-
quently measured by the RoT. More precisely, all memory that the
trusted M-mode software comprises has to be measured. That of
course also includes other software like the SBI implementation and
the bootloader, as these programs can freely modify any memory
addresses due to their privilege level. For the sake of simplicity, the
hash generated by the RoT in this regard is referred to as the SM
hash.

The RoT generates an asymmetric keypair needed for attestation,
using the device’s private key (requires platform support) and the
SM hash as inputs to the key generator. As discussed in Section 3.8,
the generated SM keypair must be deterministic but unforgeable.
The RoT signs both the SM hash and the SM public key and stores
the hash along with the keypair and the signature in a location
accessible by the SM. Then, any device setup can be performed by
a bootloader. Before handing control over to the firmware payload
(an S-mode second-stage bootloader or the host system), the SM
must be executed initially for it to initialise. During initialisation
of the SM, a PMP region is defined via the highest-priority PMP
CSR to cover the SM’s memory and restrict any S-mode access to
it. In addition, another PMP region (lowest priority) is setup to
cover the rest of the physical address space, permitting S-mode and
U-mode access (this is mandatory for the host to function). It is
unimportant whether the bootloader initiates the SM startup before,
during or after its own operations, as long as it does not modify the
PMP entries or any SMmemory. At any time after SM initialisation,

Table 1: SBI calls provided by the SM. Some can only be used
by the enclave, others by the host. The call_plugin SBI call
is generically used to activate custom plugins that either the
host or the enclave (or both) can utilise.

Caller SBI Call Description

Host create Request enclave creation
run Run the enclave initially
resume Resume enclave after suspension
destroy Zero and free enclave memory

Enclave stop Suspend execution
exit Exit cleanly
attest Request attestation report
random Retrieve a random number
get_sealing_key Retrieve the sealing key

Both call_plugin Invoke a custom plugin

S-mode can be activated and control can be transferred to the
firmware payload.

3.4 Extended SBI
A RISC-V system that Keystone should be employed on will typ-
ically supply an M-mode SBI implementation such as OpenSBI.
While the system’s default SBI offers the host a certain amount
of functionality (e.g. hardware information, peripheral control), it
will not satisfy Keystone’s requirements. Therefore, the SM imple-
ments another set of SBI calls in addition to the already existing
ones. The RISC-V SBI specification allows for custom SBI calls to
be implemented along standardised ones.

The SBI calls implemented by the SM can be categorised in two
groups: calls offered to the host OS for enclave initialisation and
control, and calls offered to the enclave for additional features such
as attestation, random number generation or data sealing. Note
that the enclave is able to use the host’s system call interface using
a mechanism called edge calls. This edge call mechanism does not
depend on its own SBI call, instead the stop call is used. How edge
calls work is thoroughly described in Section 3.9.

The individual SBI calls are listed and described in Table 1. The
SM can differentiate between calls issued by the host and calls
issued by the enclave using internally stored status data. Thus, the
host cannot e.g. access sealed data by issuing an enclave SBI call.

3.5 Basic Operations
As described above, the custom SBI implemented by the SM is
crucial for Keystone’s fundamental operations. This section will
explain the lifecycle of an enclave in detail.

Enclave creation is initiated by the host (more specifically, the
host application and the host’s Keystone driver). The host finds a
continuous physical memory region not used by itself and copies
the enclave’s code and data into that region. It also creates and
populates paging structures for the enclave, enabling the runtime
to manage the enclave’s virtual memory on its own. The root page
table’s physical address along with the base and size of the enclave
memory region are transferred to the SM via the create SBI call.
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Figure 2: The same large memory region schematically
shown at three different points in time: after creation of
enclave A (top), at execution of A (centre), after destruction
of A (bottom). Shaded regions are inaccessible by the current
context because of PMP settings. Enclave B does not change
its status in this example.

The SM verifies that the enclave memory region does not overlap
with any other PMP region and measures the enclave’s contents
by walking the host-provisioned page tables and hashing the page
contents. Finally, a high-priority restrictive PMP entry is created
to disallow any further access to the enclave memory. The entry is
propagated to other CPUs by sending an inter-processor interrupt
(IPI). At this point, the enclave is runnable but not yet running, so
that control is handed back to the host.

Execution of the enclave is started by the host issuing a run SBI
call. The enclave to be run is specified through an ID generated
at enclave creation. When handling the SBI request, the SM sets
the host’s PMP region to restrictive and the enclave’s PMP region
to permissive. Consequently, any enclave access to host memory
will fail, while the enclave is now able to access its own memory.
This change is not propagated to other CPUs to allow them to
continue their host/enclave execution. Likewise, all other enclaves’
PMP regions are left restrictive locally. After PMP configuration,
the SM replaces the host root page table with the enclave one and
then switches context into the enclave, effectively launching the
runtime. To prevent the enclave from keeping control indefinitely,
the SM sets up a hardware timer before entering the enclave.

Destruction of the enclave requires the enclave to have stopped.
This can happen either by the enclave itself issuing an exit or a
stop SBI call, or by a timer interrupt. After gaining control, the
SM reverts the PMP changes made before enclave execution and
resumes the host. The host calls destroy, making the SM zero all
enclave memory and delete the corresponding PMP entry and all
enclave metadata. Upon returnal of the SBI call, the host can now
access the enclave memory region, enabling the host to reuse it for
its own purposes. Any held enclave metadata can also be freed.

Figure 2 shows how the memory layout and permissions change
over the lifecycle of an enclave. The other controlling SBI calls, stop
and resume, work similar to exit and run, but without destruction
(exit) or initialisation (run) procedures. They allow the enclave to
suspend its execution to communicate with the host application
via edge calls.

3.6 Multiple Enclaves
Keystone allows for a theoretically arbitrary number of enclaves to
exist and run concurrently. In practice, the number of PMP CSRs
restricts how many enclaves can be created, as each enclave occu-
pies at least one PMP entry. It is hardware implementation specific
how many PMP CSRs there are.

After enclave creation, the host can at any time create another en-
clave with a separate memory region. When one enclave is stopped,
another enclave can be resumed or run while the previously exe-
cuted enclave is suspended. On multi-CPU systems, the host can
continue running on one CPU while at the same time an enclave is
being executed by another CPU. It is also possible for a CPU to run
an enclave while another enclave is being run by another CPU at
the same time. This behaviour is possible because PMP changes are
only propagated to other CPUs at enclave creation and destruction,
but not when resuming or stopping an enclave. That way, a CPU
that has access to a specific enclave’s memory region will keep
that permission while still being restricted from accessing memory
regions of enclaves or the host running on other CPUs.

On single-CPU systems, the enclave suspension mechanisms
(stop and timer interrupts) can be used to allow for pseudo-parallel
multiple-enclave execution. It should also be noted that the Key-
stone reference implementation does not allow for the same enclave
to be executed on multiple CPUs at the same time, thus restricting
in-enclave threading to one core only. However, by making modi-
fications to the SM, this restriction could be lifted by the enclave
developer.

3.7 Attestation
Attestation in Keystone relies deeply on an existing and trustworthy
RoT and thus requires custom hardware extensions. The RoT-signed
SM hash and public key are accessible to the SM at any time. It
cannot reliably forge the measurement due to the device’s signature
key only being accessible to the RoT and not the SM itself. Therefore,
the SM measurement can be trusted as long as the RoT can be
trusted.

The SM measures the enclave’s pages at creation and keeps that
measurement until enclave destruction. An enclave can request an
attestation report through the SBI by calling attest, which will
prompt the SM to generate and sign an attestation report that can
then be transferred to the host application (and thereby to a re-
mote verifier) using an edge call. The attestation report contains
the RoT-signed SM hash and SM public key, the enclave measure-
ment and up to 1 KiB of arbitrary enclave data. The SM signs the
entire report using its own private signature key that was gener-
ated by the RoT. The 1 KiB enclave data is chosen by the enclave
itself and is supplied to the SM as part of the attest SBI call. This
can be used to distribute e.g. an eapp’s own public keys, signed
host-to-enclave transmitted data for remote validation or signed
computation results. Prior to the SBI call, the supplied data resides
within PMP-protected enclave memory and can only leave this
protected memory region as part of the signed attestation report.
Thus, its integrity is protected at all times, while its confidentiality
is lost when transferring the report to the host, unless the data has
been encrypted by the eapp.
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Figure 3: Various secret keys (S) and hashes (H) are used for
deriving the sealing key. The RoT embeds the device’s (Dev)
and the SM’s identity into the SM’s key. The SM uses its own
key with the enclave (Enc) hash (the enclave’s identity) to
compute the deterministic sealing key.

Attestation can be carried out at arbitrary moments during en-
clave execution. For example, an attestation report could be gen-
erated after finished eapp computation, on request of the remote
verifier or prior to enclave exit. The attestation report is handed
over to the host application, which cannot forge the report because
of the trusted signature. To obtain the report, the remote verifier
communicates directly with the host application. The verifier will
use the device’s public verification key to verify the SM hash and
the SM’s public key, and then use the SM’s public key to verify the
enclave hash and enclave data. Providing the device’s verification
key to the verifier is the hardware manufacturer’s task, as it is the
manufacturer’s task to generate the device’s key pair in the first
place.

Of course, when verifying the components, only the authentic-
ity of the report is checked. For validation of its contents (i.e. the
hashes), the expected SM and enclave hashes have to be known.
Generating the expected SM hash only requires the verifier to hash
the SM binary, whereas generating the expected enclave hash is
more complicated. Because the enclave hash calculated by the SM
is not based on the enclave binary, but rather on the enclave’s page
contents only known after initialisation by the host, statically calcu-
lating the enclave hash is nontrivial for the verifier. The currently
advertised approach [6] incorporates running a virtual machine
on a device trusted by the verifier, executing a host OS and a mod-
ified host application along with the desired enclave binary. The
modified host application makes the enclave request an attestation
report and outputs the enclave hash part of the report to be obtained
by the verifier.

3.8 Data Sealing
Data sealing in Keystone works by enabling the SM to compute
a deterministic encryption key for the enclave to use in any way,
requested by the enclave using the get_sealing_key SBI call. The
key could for example be used to encrypt data that is then transmit-
ted to the host application to be stored persistently. The encryption
key must be deterministic for the enclave to be able to decrypt data
even after a system reset, because the exact same key is needed for
both sealing and unsealing. A given combination of a device, an
SM and an enclave will always yield the same key, whereas a com-
bination including any differing component will yield a different,
yet also deterministic key.

The encryption key is derived using the SM’s private key and the
enclave hash (see Figure 3). Because the SM’s private key is derived
by the RoT using the SM hash and and the device’s private key, it
is bound to both the device’s and the SM’s identity. Including the
enclave hash to compute the encryption key makes it impossible for
another enclave to be given the same key. In order for an enclave
to request multiple keys for different purposes, a freely chosen key
identifier can be supplied when calling get_sealing_key.

If any component changes, the encryption key also changes. Any
change to the enclave binary or the SM binary, or employing the
same setup on different hardware, will lead to a different key.

3.9 Edge Calls
Edge calls are Keystone’s means to offer host-enclave communica-
tion. The edge call mechanism is realised using shared memory
between the enclave and the host. Upon enclave creation, in ad-
dition to the enclave memory region, the host allocates a shared
memory region and includes it into its virtual address spaces. On
create, the physical address and size of the region are handed to
the SM, who in turn installs a PMP entry for the region, accessible
by both the host and the enclave.

To perform an edge call, the eapp writes instructional data to the
shared buffer and requests the runtime to suspend the enclave. After
gaining control, the host application inspects the return value of the
original run or resume operation that has just returned, making it
possible to differentiate between an edge call and a timer interrupt-
based enclave suspension. The host application then reads from the
shared buffer to obtain the provided commands from the eapp.

The exact way how edge calls are handled by the host application
is left open, but ordinarily an RPC-like approach is used to call
procedures implemented by the host application. The eapp can also
instruct the host application to invoke host system calls on the
eapp’s behalf. That allows the eapp to perform IO and networking
operations by using functionality that is provided by the host OS
and made available to the eapp by the host application and the edge
call interface.

4 ENCLAVE DEVELOPMENT
This section highlights the developer’s perspective of Keystone.
On the one hand, a Keystone developer can craft own Keystone
components or modify existing ones. On the other hand, an enclave
application developer can develop eapps and host applications to
be used with Keystone.

4.1 Extensibility
The high degree of customisation possible in Keystone allows for
advanced additional features to better suit the user’s needs.

As Eyrie [4] is a modular runtime, several modules can optionally
be enabled when building Eyrie from source code. Not including a
module decreases the amount of code eapps have to trust, while in-
cluding certain modules offers functionality that may be necessary
for an eapp’s operation. Modules that already exist include network-
ing and IO system calls, free memory management, encrypted page
eviction and debugging capabilities. Of course, new modules can
be developed, e.g. to enable thread management within an enclave.
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Another way to customise the runtime is to replace it altogether.
As Lee et al. highlight in [11], the seL4 formally verified micro-
kernel [10] had previously been ported to Keystone to function
as a runtime. However, its Keystone patches [2] have been depre-
cated, while the Keystone documentation [6] suggests an upcoming
revival of the port.

The SM can also be extended by developing plugins or adding
firmware hooks that are called during life cycle changes of the en-
clave (e.g. at creation or resumption). SM modifications are primar-
ily used to benefit from custom hardware extensions that require
M-mode. Plugins can be called via the call_plugin SBI call by
either the host or the enclave and are implemented in the SM. An
existing plugin that can be found in Keystone’s source code [5] is
the multi-memory plugin, offering an enclave to allocate another
PMP-protected memory region for its free use. Firmware hooks
have been used by Lee et al. [11] to implement hardware-dependent
functionality like cache partitioning to prevent cache side channels
or the usage of on-chip memory to prevent physical DRAM attacks.

Customising the Keystone host driver is only necessary to allow
for changes to the SM or the runtime that depend on host support.
For example, an SM plugin that can dynamically resize an enclave’s
memory region would depend on the host freeing adjacent memory.

Other than just expanding upon the existing SM, runtime and
driver implementations, a completely new implementation of a
component could be developed and employed without necessarily
having to make adjustments to any other component. This would
in fact be necessary for porting Keystone to a different ISA, if
applicable, or to handle enclaves from other hosts than Linux.

4.2 Developing Enclave Applications
Keystone offers an SDK to eapp developers in order to decrease
the amount of manual work needed to set up enclaves and run
applications in them. While using the SDK is not necessary, it can
be a helpful abstraction of underlying primitives, such as calls to
the host driver or the runtime. The SDK comprises four categories
of libraries and C/C++ header files that can be used respectively
for developing host applications, eapps, remote verifiers or edge
call interfaces. It should be noted that the SDK is still work in
progress [6], so that there is still much manual labour required for
creating enclave applications. When building applications, their
binaries have to be linked against compiled SDK libraries, if the SDK
is used. Other than that, eapp applications are typically ordinary
ELF binaries, although the binary format depends on the runtime
implementation.

5 RELATEDWORK
Lee et al. [11] introduced Keystone, aiming to eliminate constraints
and potential security vulnerabilities that other TEE designs im-
pose on their users. For example, AMD SEV [13] only ensures
confidentiality in regard to host-controlling adversaries or physical
adversaries, but does not ensure integrity against these attacks. In-
tel SGX [12] on the other hand does offer full security against these
adversaries, but not against side-channel attacks. ARM TrustZone
[1] is resilient against neither physical nor side-channel attacks.

Another consideration when employing a TEE is the trusted
computing base (TCB), which ideally should be minimal. While

Intel SGX offers a small software TCB, Keystone’s TCB includes
the entire SM, all M-mode code (including the bootloader and SBI
implementation) and arguibly the runtime. While the runtime could
be minimal to only offer basic services to the eapp, the SM and
other M-mode firmware cannot substantially be reduced in size.
According to Lee et al. [11], Keystone’s TCB lies in the range of
thousands of lines of code. In contrast, TrustZones TCB comprises
millions of lines of code.

In opposition to many other TEEs, Keystone is mostly software-
based and does not need changes to existing hardware (although it
requires certain hardware to exist in the first place).While hardware-
based approaches like SGX and TrustZone obviously demand hard-
ware modification, another TEE closer related to Keystone, namely
Sanctum [8], also requires hardware to be modified. Like Keystone,
Sanctum is aimed at RISC-V platforms.

From a developer standpoint, Keystone seeks to minimise the
effort of porting existing applications to be used in an enclave.
Largely unmodified RISC-V binaries targeting Linux can be run in
a Keystone enclave through Linux system call emulation by Eyrie.
For other binaries, another runtime could be used. But there do exist
TEEs that cannot re-use existing code bases, but instead require
applications to be modified and rebuilt or be completely re-written
from scratch. Although sharing similarities with Keystone, Sanctum
does not offer full application support, while SGX makes porting
existing applications rather impossible.

6 EVALUATION
From the enclave developer’s point of view, Keystone provides the
advantage of full customisability as compared to hardware TEE
solutions. The reference implementation already offers a usable
code base that can be taken on to create one’s own Keystone imple-
mentation.

On the other side, working with Keystone still requires a large
amount of manual effort. The current state of the SDK does not
offer a great amount of help yet, while some crucial tasks needed
for basic functionality like attestation or edge calls are still very
labour-intensive.

Asmentioned before, calculating an expected enclave hash needed
for verification of the attestion report is tedious and incorporates
trusting a virtual machine and the host it is running on. Realising
edge calls is not straightforward either, as the SDK does not provide
a means to take the burden of implementing an RPC system off the
developer. However, an edge call generator, Keyedge [3], is under
current development1. This generator can automatically generate
edge call code based on user-provided C header files and thereby
takes the task of implementing complex encoding and marshalling
procedures away from the enclave developer.

Additionally, the way data sealing works in Keystone does not
allow components to be updated without prior data unsealing. As
the sealing key is dependent on the hardware key, the SM and
the enclave, any deliberate change to one of these components
will lead to previously sealed data becoming unsealable. Keystone

1Although the Keystone documentation [6] mentions the Keyedge project as being
in current development, the public repository [3] has not seen updates since the year
2019.
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users should always keep this behaviour in mind in order to avoid
unpleasant accidents.

7 CONCLUSION
Keystone proves to be a highly flexible TEE framework able to
seamlessly be integrated with conventional RISC-V hardware. It
offers protection against a reasonable range of adversaries, while
being able to increase that range by further customisation based
on hardware extensions. It can be arbitrarily altered, not imposing
any design constraints on TEE architects.

The main caveat with Keystone is that it is not ready for pro-
duction use, as stated in the Keystone online documentation [6].
Modifications like hardware-specific initialisation routines have
to be made in order to make it deployable on a given hardware
platform.

Eventually, Keystone may grow to be a mature, readily deployed,
feature-rich trusted execution platform. Work is being invested in
fixing issues like the impractical way to generate enclave hashes
for verification, or the still labourious way of creating Keystone
applications. Taking a look at projects like Keyedge [3] raises hope
that Keystone’s current problems are going to be smoothed out in
the near future.
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