
Platform Software for Safety-Critical
Multicore Systems
Echtzeitsysteme 09.01.2023

Dr. Isabella Stilkerich



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Example: Schaeffler’s Embedded Systems

A wide range of these applications use an embedded system for e-
motor control

E-Wheel Drive

Hybrid ModuleeAxle

Active Roll-Stabilizer

Gearbox actuator



Embedded System E-Motor Control

+

-Ba
tt
er
y

H3H1 H2

Software

E-Motor

Switching the transistors in a coordinated way generates
a rotating electromagnetic field



Functional Features
Motor types

Permanent magnet synchronous motor

Asynchronous induction motor

Electric current control

Field oriented control

Feed forward, magnetic saturation, 
reluctance

Field weakening control

(Over-)modulation schemes 
and variable switching frequencies

Superimposed controllers

Speed (window) control

Jerk control

Derating and Diagnostics

Self protection and fault detection

Performance derating

Sensors and Observers

Angle tracking observer

Power loss and temperature estimation

Magnetic flux in stator windings

Libraries for various utilities

Table lookup and interpolation

Numerical routines

Signal filters



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Variability: Software-Platform Approach

Library functions are developed using Matlab / Simulink

E-Motor Control SW Platform
Mechatronic
Project #1

Mechatronic
Project #2



Important Qualities: Architecture Goals

• High intelligence and complexity of the control software (selected of qualities):
• Functional correctness: torque precision, dynamics, safety
• Performance efficiency: time behavior, resource utilization, energy
• Reliability: availability
• Security
• Portability: variability, adaptability
• Maintainability

• Qualities are often cross-cutting concerns
• Technical constraint: Use of AUTOSAR (Automotive

Open System Architecture)
Functional 
suitability

Performance 
efficiency Compatibility Usability Reliability Security Maintainability Portability

Functional 
completeness

Functional 
correctness

Functional 
appropriateness

Time behavior

Resource 
utilization

Capacity

Co-existence

Interoperability

Appropriateness 
recognizability

Learnability

Operability

User-error 
protection

User-interface 
aesthetics

Accessibility

Maturity

Availability

Fault tolerance

Recoverability

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Modularity

Reusability

Analyzability

Modifiability

Testability

Adaptability

Installability

Replaceability

ISO 25010: Product quality



How to address these complex topics?

Expect errorsAbstraction M
od

ul
ar

ity

Loose 
coupling

Strong 
cohesion

Dependency injection

Inversion of control Dependency
Inversion PrincipleSeparation of Concerns

Information HidingOpen-Closed
Principle

Single Responsibility
Principle

Conceptual Integrity Simplicity

Design Principles



How to address these complex topics?

Expect errorsAbstraction M
od

ul
ar

ity

Loose 
coupling

Strong 
cohesion

Dependency injection

Inversion of control Dependency
Inversion Principle Separation of Concerns

Information HidingOpen-Closed
Principle

Single Responsibility
Principle

Conceptual Integrity Simplicity

Design Principles



Functional Architecture (1)

Example: Cruise Control

«block»
Determine current 

speed

«block»
Determine desired 

speed

«block»
Determine brake 

status

«block»
Calculate throttle 

setting

«block»
Control throttle

Desired Speed Throttle Setting

Brake Status

Current Speed



Functional Architecture (2)

• A functional architecture represents knowledge about the core function logic:
• Central concepts of the core functional logic, their attributes and relationships
• Enables a better understanding of the function logic
• Establishes a common language
• Helps to detect inconsistencies and redundancies
• Builds the connection to requirements engineering (cf. domain models)

• Functional architectures abstract from technical aspects
• The core functional architecture is independent of technical concerns and has an 

independent life cycle
• Modeling includes structure (e.g. representation of concepts and their 

relationships in a class diagram) and behavior (e.g. modeling of interaction of 
structural elements in a sequence diagram)

• Experts for functional architectures are often not software developers, but 
experts for electric motors, physicians, …



Functional Architecture (3)

Example: Cruise Control

«block»
Determine current 

speed

«block»
Determine desired 

speed

«block»
Determine brake 

status

«block»
Calculate throttle 

setting

«block»
Control throttle

Desired Speed Throttle Setting

Brake Status

Current Speed

ASIC?

FPGA? CPU?

CAN? FlexRay?

Local? Ethernet?



Technical Architecture (First Sketch)

Example: Cruise Control

Wheel Sensor

Cruise Control HMI 
Unit

Brake System

Cruise Control System Engine Control

Button Event Throttle Setting

Current Speed Brake Status

Pulse Signal



How to Construct a Dependable Embedded System?

Functional Architecture

Technical Architecture

Software Implementation

To
p-
D
ow
n

System Architecture

Software Architecture

Specfication
Specification

Specification



How to Construct a Dependable Embedded System?

Functional Architecture

Technical Architecture

Software Implementation

Bottom
-U
p

System Architecture

Software Architecture

In
te
gr
at
io
n

In
te
gr
at
io
n



How to Construct a Dependable Embedded System?

Technical Architecture

Software Architecture

System Architecture

Functional Architecture

Software Implementation

Specfication
Specification

Specification
In
te
gr
at
io
n

In
te
gr
at
io
n

Iterative Incremental



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Example: Architecture Goals

Functionality, safety, real-time behavior: Alignment of design goals
• Functionality often benefits from methods applied in the context of safety-

relevant systems, e.g., isolation and real-time properties
• Safety mechanisms should not just be „mounted on top of functionality“

Properties such as timing, memory usage and safety are a cross-cutting system
aspect
• They have to be respected at all system, hardware and software levels
• The engineering disciplines rely on each other, they are equally important
• Properties should be included in the design process just as any other

functionality or relevant property



Isolation in ISO 26262: Freedom from Interference (FFI)

From ISO26262-6, Annex D
• Software elements must not affect each other in an unintended and negative way
• Errors in an application shall not spread to other applications
• Errors in an application shall not spread to infrastructure services
• Errors in an application shall not affect other system elements

• Elements subject to decomposition must be isolated from each other

Achievement of FFI 
• Timing and execution: Temporal isolation: Scheduling, execution budgets, watchdogs, ...
• Memory: Spatial isolation: Semantic analysis, memory-protection unit, ...
• Safe exchange of information: Communication between isolated elements: checksums, 

...



FFI in Space and Time

Physical isolation of software instances (e.g., independent MCUs): Federated architecture

All resources (memories, CPU time, etc.) can be assigned to a specific functionality

Often, functionalities need to cooperate, they have dependencies
• Safe data exchange between components
• Waiting times / latencies have to be respected in system design, etc.

Functionalities may also be deployed on the same MCU: Integrated architecture
• To reduce physical weight and size as well as costs
• Complicates the provision of FFI
• In contrast to physically isolated components, sophisticated mechanisms are needed for

FFI



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Temporal and Spatial Isolation: A Software Topic Only? 

CPU time and memory must be shared across components

• CPU time sharing can be achieved by the use of an RTOS scheduler

• A scheduler provides a framework for the construction of a real-time system
• An unfortunate application structure may impede timely execution
• A proper thread / task architecture has to be created

• Memory partitions and their locations have to be defined, data and code has to be assigned

<<task>>
Watchdog

attributes
priority=1
core=2
preemption=yes
sharedMem=no
function=wdgFkt
…

<<task>>
IO Handling

attributes
priority=12
core=1
preemption=yes
sharedMem=yes
function=acquire
…

<<task>>
Calculation

attributes
priority=12
core=1
preemption=yes
sharedMem=yes
function=calc
…

<<task>>
Diagnostics

attributes
priority=20
core=1
preemption=yes
sharedMem=yes
function=diag_mem
function2=values

<<Memory>>
sharedMem

attributes
address_start=0x0
address_end=0x800
sync=semaphore
mapped_data=…
accessed_by=…
…

<<access>>

<<access>>

<<access>>



Temporal and Spatial Isolation: A Software Topic Only? No!

Scheduling and isolation are system-architectural topics:
• The temporal /spatial partitioning is dependent on the system requirements / architecture

• Mathematical scheduling analyses are performed on both functional and technical architecture, e.g., rate-monotonic analysis (RMA)

• CPU selection
• Distributed network of MCUs, etc.
• Aspects at all system-architectural levels influence each other

Example: Temporal Constraints, Computational Spacetime, Error Spreading
• Undesired memory accesses may induce temporal faults
• Unspecified or faulty sensor values may induce temporal faults
• A faulty design specification may induce temporal faults
• Measures (e.g., software-based replication) meant to provide safety

• Affect timing behavior
• May in turn induce temporal faults

The holistic solution has to be respected during analyses!



Mechanisms for Providing Timely Execution

G
eneric

Applicability
(Ahead-of-tim

e / Runtim
e)

Av
oi

da
nc

e
/ L

ev
el

 o
fD

et
ec

tio
nSoftware: Task / Thread 

Architecture including
partitioning

Hardware Watchdog
Monitoring

CPU Selection / Architecture
of Distributed System

Determination of logical
WCET Assignment of execution

budgets / schedule
determination

Verification
Semantic Code Analyses

Verification
Measurement-based Tests

Execution-budget monitoring
through real-time OS

Application-level exception
handling

Other techniques

System Architecture

Software Architecture, 
Implementatíon, Verification

System at Runtime



Mechanisms for Providing Timely Execution

G
eneric

Applicability
(Ahead-of-tim

e / Runtim
e)

Av
oi

da
nc

e
/ L

ev
el

 o
fD

et
ec

tio
nSoftware: Task / Thread 

Architecture including
partitioning

Hardware Watchdog
Monitoring

CPU Selection / Architecture
of Distributed System

Determination of logical
WCET Assignment of execution

budgets / schedule
determination

Verification
Semantic Code Analyses

Verification
Measurement-based Tests

Execution-budget monitoring
through real-time OS

Application-level exception
handling

Other techniques

System Architecture

Software Architecture, 
Implementatíon, Verification

System at Runtime



Separation of Concerns

Planning of temporal handling and dispatching of threads
1. Scheduling is the planning strategy

• Construction of a thread-execution plan, which defines the order thread
processing; statically at design time or dynamically at runtime

2. Dispatching is the thread-management mechanism
• Implementation of the thread-execution plan
• Overhead depends on thread type (process, user-level, kernel-level, i.e., 

memory-protection-zone assignment) being used



Scheduling at the Implementation Level

• Scheduling deals with the determination of points in time at which
work units are executed on a particular processor
• Scheduling is a two-phase approach

1. Work units have to be assigned to threads (statically at design time)
2. Threads have to be assigned to processors (statically / dynamically)

Software Architect

Software Architect
Operating System



An Engineering Framework for Generic 
Application Software 
We have been implementing an engineering framework that will support us
in building our Software Platform according to the construction-kit approach
by cross-architectural space-time analyses:
• Schedulability analyses at the level of the functional / technical

architecture
• Spatial isolation specification at the level of the functional / technical

architecture
• Hybrid semantic and dynamic timing analyses at the binary-code level
• Semantic reachability and scope analyses at the source-code level

In this way, we both support correctness and safe / efficient mapping of
tasks to multicores and data / code to physical memories



Thread of Control (1)

• An OS thread / task is an abstraction of the operating system provided to
• programs from the application layer
• infrastructure-software programs (e.g., drivers)

• A thread executes (parts of a) program(s) and is a modelling element in a 
software architecture

• The thread-architecture view is defined by the architect
• Thread structure (relations, dependabilities)
• Assignment of properties: priority, preemption, events
• Assignment to memory-protection zones (address spaces)



Thread of Control (2)

This approach is a realization of the separation-of-concerns principle
• Separate what (code) from how (execution)
• An OS partially encapsulates the architecture goal timing behavior in a software 

architecture
• Supports code reusability and extensibility (in contrast to (manually applied) Cyclic 

Executive Pattern)

The thread-management overhead of the OS depends on the thread-architecture 
• Single-threaded program
• Multi-threaded program 

• Single address space
• Isolated OS kernel
• Multiple isolated address spaces



AUTOSAR OS for FFI: Memory-Protection Zones

ap
pl

ic
at

io
n

iso
la

tio
n

Control-flow isolation

kernel Data Code

kernel protection

TCB kernel Data Code



ASSIST: Scheduling at the Level of Functional
Architectures
How to derive a technical architecture from a functional architecture?

Define constraints for the technical architecture
• Hardware resources
• Temporal isolation and other timing properties
• Spatial isolation
• etc.

Solve Constraint Satisfaction Problem



ASSIST



ASSIST: Mapping
ASSIST is extended
to output an initial 
operating-system 
configuration



Implementation-Level Analyses

• The actual implementation affects timing and memory-handling properties
• Therefore, the implementation has to be analyzed
• Source code
• Binary code
• Depending on the programming being used, these analyses differ
• Type-safe languages are already memory safe and support the correctness of memory

handling
• Programs coded in languages (e.g. C) that have a weak type system may be analyzed to

establish memory safety
• C programs are predominant in the embedded domain
• Semantic analysis and abstract interpretation in particular can be used to make C 

programs memory-safe



Semantic Code Analyses

Objective: Detection of runtime errors in programs (dynamic tests are often unsuitable)

• Sound vs. Unsound:
• Unsound tools report only a subset of actual runtime errors (false alarms and undetected

errors) 
• Sound tools reliably report supported runtime-error types (false alarms, but no undetected

runtime errors) and prove their absence, accordingly

Quality of sound tools is measured by number of false alarms
• False alarms require manual analysis efforts
• High number of false alarms impedes efficient use during development („continuous

verification“): Example for a sound tool is Astrée, which makes use of abstract interpretation



Retrofitting an Unsafe Language with Astrée
Astrée ensures memory safety by statically proving absence of certain types of runtime errors
• Invalid usage of pointers and arrays
• Invalid ranges and overflows
• Invalid shift argument
• Uninitialized variables
• Division or modulo by zero
• Failed or invalid directives
• Invalid function calls
• Data and control flow alarms
• Invalid concurrent behavior

Thus, we can establish memory safety in a C program! This, in turn, allows to
• Construct spatial isolation realms by logical separation of all global data
• Build application- and hardware-tailored, safe memory management using Abstract Interpretation



Schaeffler: KESO goes ASSIST and Astrée
KESO : Research project (2005-2017) in the domain of safety-critical Java (SCJ) Real-Time Specification for Java (RTSJ)
• Respect of system description and the operating-system model (AUTOSAR OS)
• Semantic analyses on type-safe code, e.g. reachability analyses to provide software-based spatial isolation and escape and region

analyses for automatic memory management

Astrée extensions being developed in cooperation with AbsInt:
• Respect AUTOSAR OS model
• Definition of spatial-isolation realms
• MCU‘s memory model
• Data classifications and assisted memory mapping
• Verification of synchronization mechanisms
Publications:
• ERTS 2020: Using Generic Software Components for Safety-Critical Embedded Systems - An Engineering Framework
• ERTS 2022: Whole-System Analysis for Memory Protection and Management



Respect the Memory Architecture: Infineon 
AURIX TC277



Hardware Specification with ASSIST

ASSIST is used to define the hardware at the
system-architectural level

• Information about task setup and isolation
requirements is used to compute valid 
mappings

• Information on the memories is merely passed
to Astrée



Apply KESO‘s memory handling to Astrée
Two-dimensional data classification
• Respect of program semantics: cf. RTSJ‘s memory model; stacks, data segments
• Extension for constant data
• Respect of the microcontroller‘s physical memory architecture
Data classes
• Thread-local data, allocation in core-local memory, local access (e.g. stack assignment)
• Thread-local data, allocation in core-local memory, cross-core access
• Thread-global data, allocation in core-local memory
• Thread-global, core-global data
• Constant data
• True constants (e.g. placement in flashes PF0 / PF1)
• Runtime-constants (Calibration parameters)

For data classification, Astrée respects the OS‘s thread model and an application‘s OS configuration, the MCU‘s memories and the
memory-safe C code



Astrée: Operating-System and Memory Scope
Extensions



An Engineering Framework for Generic 
Application Software 



Résumé
Construction of a Software Platform
• Generic applications developed using the Matlab / Simulink DSL
• ECU developed to construction-kit approach using a processor family
• Timing and memory analyses at the architecture and implementation level

Further reading:
Avoiding systematic faults in timing at the system-architectural level:
Using Generic Software Components for Safety-Critical Embedded Systems - An Engineering Framework
Real-Time Systems Lecture at Chair of Operating Systems, Computer Science Department at University of 
Erlangen-Nuremberg
ARAMiS II Research Project
Astrée
ASSIST
KESO

https://www.researchgate.net/publication/338306894_Using_Generic_Software_Components_for_Safety-Critical_Embedded_Systems_-_An_Engineering_Framework
https://www4.cs.fau.de/Lehre/WS13/V_EZS/
https://www.aramis2.org/
https://www.absint.com/astree/index.htm
https://co4e.com/assist
https://www4.cs.fau.de/Research/KESO/


CPSA: Certification Program (1)

CPSA-E
Expert Level
(in preparation)

CPSA-A
Advanced Level

CPSA-F
Foundation Level

Knowledge and skills for creating and 
documenting an appropriate software 
architecture for small and medium sized 
systems
Participants gain the competence to 
make problem oriented architectural 
decisions, based on their previously 
acquired practical experience
Not specific to any particular domain
Multiple choice exam



CPSA: Certification Program (2)

CPSA-E
Expert Level
(in preparation)

CPSA-A
Advanced Level

CPSA-F
Foundation Level

Modular structure: Participant selects 
training modules
For each training, the participant is 
awarded credit points in one or more skill 
areas:
§ Methodical skills
§ Technological skills
§ Soft skills
At least 70 credit points are required for 
final exam
All skill areas must be covered



CPSA: Certification Program (3)

CPSA-E
Expert Level
(in preparation)

CPSA-A
Advanced Level

CPSA-F
Foundation Level

Final exam:
§ Participant receives an architectural 

case study as an examination task
§ Approx. 40 hours effort
§ Written solution is assessed by two 

examiners
§ Participant has to explain and defend 

solution in telephone call with 
examiners

For details:
§ http://www.isaqb.org/



CPSA – Foundation Level
• Architecture in the development context

• Stakeholders, organizational constraints
• Role definition and assigning the architecture role

• Approach
• Requirements analysis
• Impact factors
• Design: 

• Approach 
• Principles
• Models and views
• Patterns and aspects

• Documentation and communication
• Quality and evaluation
• Implementation of architectures

https://isaqb-org.github.io/curriculum-foundation/curriculum-foundation-en.pdf



CPSA – Advanced Level: Dependable 
Embedded Systems
• System development for embedded systems

• Importance of system architecture for key topics such as timing, reliability, and functional safety 
• Modeling and analysis of functional and technical architectures

• Software development for embedded systems
• Software modeling for embedded systems
• Approaches and paradigms for implementation and verification

• Reliability and functional safety
• A systematic approach to the development of reliable and safety-critical embedded systems
• Solutions at the architecture level

• Real-time and concurrency
• Analysis of real-time requirements
• Architectural solution approaches for real-time and concurrency
• Analysis of real-time properties

• Adaptability and variability
• Analysis and modeling of variability
• Methods, principles, and solutions for adaptability and variability

https://isaqb-org.github.io/curriculum-embedded/curriculum-embedded-en.pdf


