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ABSTRACT
Embedded, ultra-low-power processors are currently being used
increasingly in many different application areas. An active field of
research is placed on determining the worst-case energy consump-
tion or worst-case power requirements of such a processor which
executes an application-specific program as precisely as possible,
in order to scale the power supply or expected runtime of a system
suitably. This seminar paper presents two approaches for determin-
ing worst-case energy consumption and peak power requirements
by Hari Cherupalli et al. and James Pallister et al. The approaches
presented are then compared with other selected methods and
experiments are carried out to reproduce results.

1 INTRODUCTION
An increasing amount of embedded applications, such as devices for
the Internet of Things and wearables, are making use of ultra-low-
power processors. Many of these applications have strict require-
ments with respect to the available energy: When using energy
harvesting, the available energy budget is limited or the size of the
energy storage and harvesting infrastructure should be minimized
in order to design a system as compact, lightweight and cheap as
possible [4]. Also, when using classical energy storage like batteries,
the energy consumption of a system also determines the size of the
energy storage modules required.

In order to optimally select a power supply for such a system, it
is necessary to determine the energy requirements of the different
components as precisely as possible. In addition to permanent con-
sumers such as sensors, the energy consumption of the system’s
processors must also be determined, which depends primarily on
the workload. This paper focuses on two different types of processor
energy requirements:

• Worst-Case Energy Consumption (WCEC) describes
the maximum amount of energy a full program run on a
processor can consume. In battery operated systems, for
example, a larger WCEC negatively affects the predicted
runtime of one charge.

• Peak Power Requirements (PPR) are relevant because
peaks in the energy consumption of the system under in-
vestigation must be coped with by the energy supply. In
case of a processor, such peaks are triggered by certain
instruction sequences during the execution of a program.
This factor is particularly relevant when using energy har-
vesting without a backup buffer, but it also has an impact
on the runtime of battery-operated systems.

Even if the processors used in the area of embedded applications
are usually simple (e.g. no caches or branch prediction) and the
programs used in such real-time systems are not overly complex
to allow analysis, these two factors still depend on various aspects,

such as the inputs and the internal state of the processor. Therefore,
an exact determination of power requirements is not trivial.

This seminar paper presents two approaches to estimate the
WCEC and PPR. Section 2 presents selected previous methods
and current challenges, then Section 3 gives an insight into a
new approach presented by Pallister et al. in "Data Dependent En-
ergy Modeling for Worst Case Energy Consumption Analysis" [16]
for analyzing the WCEC of a program. In Section 4, another new
approach introduced in "Determining Application-Specific Peak
Power and Energy Requirements for Ultra-Low-Power Processors"
by Cherupalli et al. [5] is outlined, which also addresses PPR in ad-
dition toWCEC. Section 5 discusses and compares these approaches
with previous methods. Section 6 concludes with a summary.

2 PREVIOUS WORK
The WCEC and PPR of a processor depend on various factors,
including in particular the program to be executed and the inputs
that the program could experience during its entire runtime. As
the WCEC and PPR have a major influence on the type and size
of the power supply required in a system, the goal is for a system
developer to be able to determine these two factors as precisely as
possible through measurements or simulations.

Determining the factors is difficult, as they depend on many
variables. For example, it was found that the exact determination
of the WCEC using an analysis of the switching activities in a
processor is an NP-hard problem [15] and, therefore, in practice, an
estimation is required. Various approaches to estimate the WCEC
and PPR can be found in literature [11, 13, 18–20], which can be
differentiated by the expected precision and categorized into two
classes: One class tries to determine the WCEC and PPR by starting
on the software structure side (e.g. instruction sequences) (software-
focused approaches), the other class focuses on the physical structure
of the hardware or measurements (hardware-focused approaches).
As hardware and software are closely related, both classes must
take the other into account for appropriate estimations of power
requirements. This classification primarily refers to how different
approaches work from a top-down perspective.

In addition, different techniques can be distinguished: Measure-
ments on the real hardware running the program are considered
more accurate, but are only possible for a known subset of all input
parameters. Measurements cannot be done for an arbitrary vast set
of different input parameters. Directly calculating WCEC and PPR
while simulating or profiling the internal workings of a processor
is also only possible for a known or random subset of all possible
input data. Static analysis is more versatile than measurements but
some form of energy model for the processor is required to estimate
the WCEC and PPR.
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Figure 1: Software-focused andhardware-focused approaches
to estimate WCEC and PPR compared by their expected
safety and accuracy.

Figure 1 provides an overview of the various approaches for esti-
mating the WCEC and PPR. The following sections presents both
hardware and software focused approaches in more detail and sum-
marises selected methods from the literature.

2.1 Software-Focused Approaches
Software-focused approaches use a complete program binary or an
intermediate form of a program (e.g. LLVM intermediate represen-
tation) to estimate the WCEC of a program. For example, Implicit
Path Enumeration (IPET) can be used, where a program is inter-
preted as a set of blocks of instructions with their control flow
graph [13]. This method is also used in determining the Worst-Case
Execution Time (WCET) in real-time systems and has already led
to many advances and approaches in this field of study. IPET is
used by Wägemann et al. to assign a hard energy budget to each
block of instructions and thus allow to estimate the WCEC of a
complete program via the worst-case control flow [20]. Grech et al.
also use IPET to determine bounds for the energy consumption of
a program in the LLVM intermediate representation and allow for
energy-aware optimization [7].

For these methods, the blocks of instructions must be mapped
to the respective WCEC using an energy model. Such an energy
model is highly dependent on the hardware onwhich the program is
then executed. For example, the energy consumption of individual
instructions depends on the input data and the current internal pro-
cessor state, so the energy model must be properly adapted in order
to be able to determine safe upper bounds for the WCEC. To ensure
that these methods never underestimate the WCEC, pessimistic
safety margins are added to the energy models, which reduces the
accuracy of the estimations.

2.2 Hardware-Focused Approaches
The most basic hardware-focused approach is to determine the
power requirements of a processor from the datasheet. Since many
programs in such embedded applications do not fully utilize all
parts of the hardware at once, this approach is overestimating by
a large factor, especially when it comes to PPR. For this reason,
many hardware-focused approaches use measurements on the real
hardware to determine the power requirements. A simple example

is a stressmark, which attempts to maximize hardware utilization so
that more accurate power requirements can be measured. Embed-
ded applications usually work in a compute/sleep cycle, so this form
of measurement is particularly unsuitable for accurately determin-
ing theWCEC. Energy requirements of processors are dependent on
the running program and its inputs, which is why these parameters
must also be considered for more precise estimates.

One way of achieving this would be to carry out measurements
while the program is running on the real hardware and test all
inputs. As the number of input combinations quickly becomes
extremely large, this is not feasible. Measuring with random inputs
is also not sufficient, as the energy requirements determined in this
way could be exceeded by untested inputs. Wägemann et al. use
Genetic Algorithms (GAs) to automatically find inputs for programs
that have particularly high energy requirements, but it cannot be
guaranteed that the resulting bounds will not be exceeded in normal
operation [20].

Other approaches estimate PPR at instruction or even gate level.
This enables a fine-grained estimation, but these are also dependent
on the input of the individual instructions and there are similar
challenges to analyzing the input of entire programs. For this rea-
son, GAs can help to estimate energy requirements at gate level, as
seen in the method of Hsiao [10]. Other approaches focus on how
the transitions of different instruction operands affect the energy
requirements of a processor. Steinke et al., for example, have devel-
oped an energy model that also takes the switching activities of
different operands in instructions into account [18].

It is evident that many factors must be considered in order
to obtain the most accurate estimate possible. In particular, a co-
analysis of hardware and software is necessary, as shown in the
early work of Tiwari et al. in which basic program-block energy
costs are combined from program flows obtained from profiling [19].
Jayaseelan et al. consider the various properties of an energy model
that are important in the execution of instructions sequences on
the processor in their co-analysis approach [11].

2.3 Limitations and Motivation for New
Methods

Previous approaches show which factors need to be considered
when determiningWCEC and PPR. The different approaches always
involve compromises: For example, some methods simplify the
energy model because they do not take the internal processor state
into account while others ignore the effect of data dependencies
of different instructions on energy consumption. As a result, these
methods must always rely on pessimistic bounds to ensure that the
energy requirements are never underestimated.

The interaction of different instructions, input data, and the
internal processor state are usually complex. Morse et al. present
this challenge as the Circut Switching Problem [15]. In order to
minimize the size and cost of power supplies for embedded systems,
it is necessary to choose the bounds of the energy requirements
tightly while ensuring at the same time that they are safe and
never underestimated. For this reason, the following two sections
present methods that consider the effects of data dependencies and
instruction sequences in programs statically, i.e. without repeated
measurements, for the estimation of different energy requirements.
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3 INSTRUCTION AND DATA DEPENDENT
ENERGY MODELING
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Figure 2: Power consumption using different operand values
for the mul instruction on a 8-bit Atmel ATmega328P devel-
opment board measured using an INA219 power meter (nop
equivalent power is subtracted).

James Pallister et al. present an approach that works at instruc-
tion level and considers not only the influence of input data on
the energy consumption of individual instructions, but also how
successive instructions influence each other in terms of energy
consumption [16].

Kerrison et al. show how different sequences of differing instruc-
tions affect the energy consumption of hardware multi-threaded
processors and how the parameters of different instructions also
have measurable effects [12]. Pallister et al. also clearly show in
their work what impact different parameter values have during a
multiplication operation on an 8-bit AVR processor. Figure 2 shows
a reproduction of this test on a processor of the same family.

Burch et al. show in their work that the power consumption of
circuits can be approximated by normal distributions, although
there are various cases in which other distributions would fit bet-
ter [3]. Pallister et al. therefore combine a new statistical approach
with the knowledge that instruction sequences and data dependen-
cies affect the power consumption of a processor.

3.1 Data-Dependent Energy Consumption of
Instructions

Pallister et al. show in their work that a Weibull distribution is
suitable for characterizing power consumption by measuring the
energy consumption of a processor during the repetition of indi-
vidual instructions with uniformly distributed, random input data.
If the parameters of the Weibull distribution are chosen appropri-
ately, it can represent an exponential distribution with a long tail,
which covers the measurements better than distribution functions
from previous approaches. Figure 3 shows an example for a Weibull

distribution fitted to test values. Modeling the energy consumption
with distribution functions makes it possible to use statistical meth-
ods for determining upper bounds for the energy consumption of
individual instructions. For example, the 99th percentile can be used
to estimate the maximum energy consumption.
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Figure 3: Distribution of the full system power consumption
from Figure 2 with a fitted Weibull distribution.

As not only the input data of individual instructions is relevant,
but also the transitions between different instructions, these should
also be incorporated into the energy model. This requires the mea-
surement of a pair of two instructions with a large amount of input
data. It needs to be ensured that all involved registers are disjoint
and contain random values. This is the worst-case scenario, as con-
secutive instructions often depend on each other and have data
dependencies between them. Pallister et al. show in their work that
these dependent instructions require less energy than completely
independent ones. To determine the distribution of independent
instruction transitions, the setup effort (e.g. loading random values
into registers) must be eliminated using data from prior tests of the
setup instruction transitions.

A complete energy model of a processor is now obtained after all
combinations of instruction pairings are run with a large amount
of random input data for several times and each pairing has been
characterized by a distribution function. For each instruction pair-
ing the obtained parameters of the fitting Weibull distribution are
saved. The authors of the paper conducted their measurements for
a part of an AVR instruction set, whereby the determination of the
distribution of a single instruction pairing took between 5 and 20
minutes. A complete characterization of an instruction set may take
a significantly long time. Since this energy model only needs to be
determined once for a processor type and can then be reused for
static analysis, this effort can be justified.

3.2 Instruction Transistion and Composition
A program can be seen as a finite sequence of pairs of instructions.
The distributions of the energy requirements of each of these pairs
are known in the energy model. The probability distributions for
every consecutive pair of instructions can be composed by using
convolution, which yields a total distribution for the program. In the
case of theWeibull distribution, this convolutionmust be performed
using numerical methods. Using this distribution it is possible to
estimate the WCEC for a whole program.
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Pallister et al. note that further steps are necessary for the anal-
ysis of more complex programs. Due to loops or branches in pro-
grams, the WCEC cannot simply consider the instruction sequence
in the program binary. The worst-case code path through the pro-
gram must be assumed and its instruction sequence analyzed. The
IPET already provides methods to identify such a path in a program.
For this purpose, the distributions of individual instruction pairs in
basic program blocks can be composed, these block distributions
can later be combined using an execution path obtained from the
IPET.

3.3 Full Program Analysis
The effort to characterize the complete instruction set of a processor
by such distributions is large. Pallister et al. therefore use a differ-
ent method to test their hypothesis that the WCEC of programs can
be approximated using a Weibull distribution. According to their
approach, a program in which the probability distributions of the
energy requirements of all instruction pairs in the execution path
have been composed yields a Weibull distribution again. Therefore,
the measured energy consumption of programs executed on a pro-
cessor given a large amount of random input data should also result
in a Weibull distribution.

Pallister et al. demonstrate this by running various benchmarks
on two different architectures. The benchmarks do not have any
data-dependent branches, so the execution time is not affected by
the input data. They show that measuring with a large amount of
random input data, the energy consumption can always be approx-
imated by a Weibull distribution.

In order to prove that this statistical approach is suitable for de-
termining an upper bound for the WCEC, further examinations are
carried out on the benchmark programs: Upper and lower bounds
on energy consumption are determined using GAs. In all cases, the
resulting bound is smaller than the probabilistic maximum deter-
mined by the distribution. Using manually created input data sets,
which are selected in such a way that they generate particularly low
or high power consumption, it can be observed that there are many
deviations from the distribution obtained by random input data.
Some of these deviations exceed the bounds set by the GAs, but
the determined probabilistic maximum is always a suitable upper
bound for the WCEC.

Pallister et al. do not describe in their work how the PPR of a
program can be determined using their approach. However, it is
reasonable to assume that the instruction pair in the program flow
with the highest probabilistic power requirement could be suitable
for estimating an upper bound for the PPR of a program.

The approach by Pallister et. al. is particularly focused on pro-
viding safe upper bounds that are never exceeded during the op-
eration of a system. Real power requirements can be much lower
due to data dependencies in instruction sequences. For this reason,
there are other approaches that attempt to take these dependencies
into account and thus establish less pessimistic boundaries.

4 SYMBOLIC SIMULATION BASED ENERGY
MODELING

Hari Cherupalli et al. present an approach that is based on the pro-
cessor’s netlist, does not require preliminary measurements, and

is therefore very different from the approach by Pallister et al. [5].
The approach is shown schematically in Figure 4 and requires three
inputs:

• A full netlist of the processor on which gate-level simula-
tions can be performed

• Extracts from a standard cell library containing information
on the energy consumption of switching individual gate
types of the processor

• The binary of the program for which the WCEC and PPR
analysis will be performed

The actual analysis then takes place independently of the exact
processor inputs, but is application-specific. Cherupalli et al. call
this procedure 𝑋 -Based: During a simulation, unknown logical
values (𝑋 s) are applied to the processor inputs. Using 𝑋 s, all gates
that could be switched under all possible inputs are marked for
each processor cycle. This makes it possible to find all gates that
can never switch during the execution of a program. In this way,
an upper bound for PPR can be found accurately, which can never
be exceeded during normal operation.
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Figure 4: Schematic overview of all steps of the approach
presented by Cherupalli et al. The path for the WCEC is not
fully explained in their paper.

4.1 Program-Dependent Gate Activity Analysis
The approach by Cherupalli et al. uses a processor-cycle accurate
symbolic simulation to perform a co-simulation of a program on a
processor netlist. Symbolic simulation uses symbolic representa-
tions of variables instead of actual values for all logical values in
the processors netlist. This allows to explore all possible gate activ-
ities [2]. Symbolic simulation has long been used in the verification
of integrated circuits and software [1, 14].

The simulation algorithm for the co-analysis proposed in the
work from Cherupalli et al. works as follows:

(1) First, the memory and all gates in the netlist are set to 𝑋 s,
in other words the unknown logical value. The program
binary is then loaded into the memory and a reset signal is
applied to the processor. The symbolic simulation can now
start.

(2) 𝑋 s are present at the processor inputs during all simulation
steps. If the processor reads from the inputs or from unini-
tialized memory, these unknown logical values enter the
program flow during the simulation.

(3) The simulation then builds an execution tree, which de-
scribes all the paths that can be taken when executing the
program. The gates that have been activated for each step
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of the simulation are saved in this execution tree. When-
ever an 𝑋 reaches the program counter, it introduces an
input-dependent branch. In this case, the simulation can
continue in two places: The branch-not-taken case can be
simulated directly, the branch-taken case is pushed onto a
stack for later processing.

(4) A path is completed when it ends the program execution
or all possible continuations have already been simulated.
In this case, a branch that has not yet been simulated is
retrieved from the stack. As soon as this stack is empty, the
program is fully simulated.

With complex control flows or input-dependent endless loops it
is possible that the simulation will never terminate as there could
be paths that can never be simulated to completion and thus other
paths are never retrieved from the stack. This occurs, for example,
when there is an unconditional jump in the program.

However, the states that a processor can encounter at such jumps
when executing typical programs are usually finite. Cherupalli et al.
makes use of this property and introduces Conservative States in
order to be able to simulate complex programs. Before starting the
simulation, for each program counter address that contains a jump
instruction, a Conservative State that contains the entire processor
status is inserted into a map. Whenever the simulation processes a
jump instruction, the simulated processor state is compared with
the Conservative State from the map at the program counter address.
Two situations can occur at this point:

• The state from the map differs from the currently simulated
processor state. In this case all values that differ between
these two states are marked with an 𝑋 . This new state is
updated in the map and loaded into the current simulation
state before continuing. The new state contains new gates
that could be toggled during further simulation steps.

• If all values from the state from the map and the current
simulation are identical or have an 𝑋 in the state from
the map where the value differs, the current simulation
state could be considered a substate that has already been
simulated. In this case the simulation of the path can be
terminated and the next branch can be retrieved from the
stack for simulation.

The rest of the simulation then proceeds in the same way as without
Conservative States. Conservative States make it possible to analyze
even complex applications in a scalable way, but the conservative
assumptions also simulate gate activities that cannot occur in prac-
tice. This introduces some inaccuracies, but the resulting upper
bound remains valid.

After co-simulation, the algorithm returns a symbolic execution
tree with all possible gate switching activities. This can then be
used to analyze the PPR and WCEC.

4.2 Calculating Peak Energy and Power
Requirements

The execution tree obtained from the co-simulation now contains a
large number of processor states, with each variable having either
a fixed value (1 or 0) or an 𝑋 assigned to it. In order to determine
the PPR of the program, it is necessary to find the cycle in which
the highest energy consumption is caused by gate toggles.

Gates consume the largest amount of energy when they toggle,
for this reason the values for 𝑋 needs to be chosen in a way that
maximizes the number of toggles in a cycle. In many cases, this is
not trivial, as transitions have dependencies over several cycles and
maximization in one cycle can prevent switching in a later cycle.
A simple example of this is the sequence 0 → 𝑋 → 1: If the 𝑋 is
selected as 1, the transition takes place between the first and second
cycle, but no switching takes place between the second and third
cycle. Conversely, this problem applies if the 𝑋 is assumed to be 0.

To avoid this problem, two passes are made to maximize the
switching activity: In one pass, the number of switching operations
is maximized for even cycles, in the other pass for odd cycles. The
resulting list of all gate toggles that happen during each cycle are
recorded by Cherupalli et al. in value change dumps (VCDs). A
complete analysis for estimating the PPR then works as follows:

(1) The execution tree is flattened to create a linear execution
trace. The VCDs for the even and odd cycles are initialized
empty.

(2) The execution trace is processed twice: In the first run, the
number of switching activities are maximized in the even
cycles by choosing suitable values for all 𝑋 s. The second
run does this for the odd cycles.

(3) The VCDs now contain a list of all gates that switch in the
individual cycles. Using the information from the standard
cell library, a power trace can now be calculated for each
of the VCDs.

(4) The cycle with the highest energy consumption can now
be identified in the two cycle-accurate power traces. This
corresponds to the PPR estimate for the program.

The power trace now shows an upper bound on how much energy
the processor can consume during the execution of the program on
a cycle-accurate basis. Determining the WCEC with tight bounds
requires further steps, as the execution tree, on which the power
trace is based, does not represent a real program sequence. There-
fore it is not possible to sum up all cycles from the power trace.
It is also not accurate to multiply the PPR by the WCET of a pro-
gram sequence, as the energy consumption varies greatly during
execution, as shown by Cherupalli et al. in their work. This still
provides a safe upper bound, but it could be very pessimistic. In
Figure 5, the high dynamic range in the power consumption of a
simple selection sort algorithm can be seen, indicating that the PPR
varies greatly for certain phases of the program, thus requiring a
more complex calculation for an accurate estimation of the WCEC.
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Figure 5: Measurement of the power consumption of a 8-
bit ATmega328P development board running selection sort
shows a dynamic range of around 25mWor 11% of the average
power consumption.
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To estimate the WCEC, the power trace must be broken down into
basic blocks that represent the branches of the original program.
The recursive procedure for determining the WCEC is then similar
to the approach by Pallister et al.: The path which has the highest
power consumption must be selected for each branch. For loops,
the power consumption of that part of the path must be multiplied
by the number of iterations. For this, the number of iterations must
be determined. This can be done by manual user input or by means
of static analysis. If this worst-case path is totaled, an upper bound
of the WCEC is obtained for the simulated program.

4.3 Optimization of Programs
Cherupalli et al. show various comparisons in their work, which
not only show that the co-simulation really does reliably detect
all gates that are also activated during a real program run. It also
shows that the estimation provided by the algorithm provides a
reliable and, compared to other methods, very tight upper bound
for PPR and WCEC.

A special property arises from the cycle-accurate power trace,
which is generated by this approach: If the power trace is linked
with the instructions that are executed for the respective cycles, it
is possible to identify which instructions or instruction sequences
yield a particularly high energy consumption and to optimize these
parts of the program.

Cherupalli et al. present some examples of such optimizations
in their work. In most cases, complex instructions, such as register-
indexed loads or stack operations, are broken down into sequences
of instructions that semantically accomplish the same operations.
This lengthens the runtime of the program and can therefore have a
negative impact on the WCEC, but it can flatten peaks in the power
consumption of the program. This is relevant for systems where
power peaks or a high dynamic range of the power consumption is
problematic, as it is the case in battery-powered systems.

5 DISCUSSION
The presented work of Pallister et al. and Cherupalli et al. shows
that estimating the power requirements of programs on ultra-low-
power processors is associated with several challenges and that the
resulting approaches can be different.

Both approaches have in common that they are intended to
enable a static analysis without any need for later measurements
on real hardware. To perform anWCEC analysis, the programsmust
be broken down into basic blocks in both approaches, whereby both
approaches rely on existing methods for program flow analysis such
as IPET. This leads to limitations whenever a program flow analysis
is impossible, which is rarely the case in embedded software and
real-time systems [8].

Pallister et al. show not only how the power consumption of dif-
ferent instructions depends on the input data, but also how relevant
transitions between instructions are in the analysis. The result-
ing energy model only considers probabilistic distributions of the
power requirements of instruction transitions, which is why other
factors, such as static leakage currents, are missing. Similar to the
work of Steinke et al. [18], the energy model can be generated with-
out extensive knowledge of the internal structure of the processor.
However, the effort to create an energy model for processors with

large instruction sets is significant or even infeasible, so there is
need for further research. The static analysis of programs using
this statistical approach is considerably less challenging than the
analysis with other methods like simulations.

The approach by Cherupalli et al. uses a completely different
strategy. Since the method requires complete knowledge of the pro-
cessor’s structure for the co-analysis of hardware and software, it is
likely that analysis methods could later only be provided by manu-
facturers, unless open source hardware is used. As in the approach
of Pallister et al., this method also considers the influence of the
input data on the WCEC and PPR, whereby it can be assumed that
the approach by Cherupalli et al. can provide significantly tighter
bounds for both values, since the fine-granular gate activities are
considered in their simulation. This is a unique aspect compared to
other methods: Jayaseelan et al. also use the electrical properties
at microarchitecture level, but it lacks a gate-accurate simulation
that also constantly considers internal processor states [11].

It is also important to consider that in applications for embedded
systems more components other than the processor are impor-
tant. This fact is not taken into account by Cherupalli et al. and
Pallister et al., but others like Phillip Raffeck et al. show in their
work how the effects on the WCEC of an overall system and their
significance can be determined [17].

Another aspect is that the approaches by Cherupalli et al. and
Pallister et al. are limited to simple processors. If non-determinism
is introduced through the use of branch prediction or caches, as
is already the case in some embedded processors today [6], the
runtime of the simulations increases drastically, or new and more
complex energy models have to be developed.

Both approaches have the potential to provide embedded system
developers with a convenient tool for estimating WCEC and PPR
and thus could contribute to the advancement towards smaller
and safer embedded systems. However, not only some questions
of practical implementation remain open, but also a lot of work is
still necessary to further optimize the approaches.

6 CONCLUSION
In this paper, several possibilities for determining the WCEC and
PPR of applications were presented. As an active field of research,
there is currently no gold standard method established. Many of
these approaches have some similar aspects to each other, are bene-
fiting greatly from the outcome of previous work or are developing
previous methods further.

There is still potential for new approaches, as shown by the
papers of Pallister et al. and Cherupalli et al. – they have described
two completely different methods for very similar goals. These
two approaches also show that there is still a lot of potential for
research in this area. For example, there is already follow-up work
that addresses further optimization for the Conservative States [9]
introduced by Cherupalli et al.

It was extremely pleasing to see how well the results from the
paper of Pallister et al. could be reproduced using a very simple
power meter. The many different factors that need to be taken
into account, the diverse approaches, and the immediate practical
benefits from new developments make this field of research exciting
and encourage an enthusiasm for future approaches and results.
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