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ABSTRACT
Living in a digital era, the terms "Internet of Things" and "embedded
devices" are well known. An increasing number of products con-
tain electronics and are internet-capable, making them part of the
Internet of Things. Nowadays, these devices are capable of collect-
ing and computing data. Furthermore, they can communicate via
general-purpose protocols. Thus, operating systems are required to
execute corresponding applications. While many general-purpose
operating systems already exist for such devices, they may not be
the optimal solution due to limited resources on these devices. This
raises the question of how to save resources while still perform-
ing tasks performantly and reliably. Wang and Seltzer suggest that
building a use-case-specific operating system represents a better
alternative to general-purpose operating systems. Thereby they
present Tinkertoy, a set of tools from which one can assemble a
custom operating system from building blocks. Consequently, an
operating system can be built providing only the necessary func-
tionality to run a specific application, omitting unrequired parts
of the system. Furthermore, Wang and Seltzer show that such an
operating system can be assembled in only a few lines of code
and provides a significant improvement in memory usage com-
pared to established operating systems for embedded devices while
performing virtually the same in terms of runtime.

1 INTRODUCTION
Low-powered devices able to collect and compute data have become
increasingly popular over the last years. Nowadays, in addition to
better performance, these embedded devices are often internet ca-
pable and use general-purpose protocols like 6LoWPAN as opposed
to previous embedded devices which had to use non-commodity
protocols like ZigBee for communication. Consequently, a number
of these devices connected together build the Internet of Things
(IoT). To execute the desired tasks, they run operating systems (OSs).
Opposed to first-generation devices which often ran rather basic
OSs like TinyOS [9] and Contiki [3], second-generation devices are
capable of running OSs much more similar to well-known desktop
OSs like Linux. Common OSs used on more modern devices are
FreeRTOS [6] and Zephyr [11]. While offering many options, these
are not the optimal way of operating all devices of the IoT. The
world of IoT is changing rapidly and so do its devices and their
respective fields of application. Additionally, many of these devices
are still limited in performance and memory. Consequently, to run
an OS like FreeRTOS or Zephyr, some features need to be removed
beforehand resulting in a lot of work. Wang and Seltzer suggest
that building a custom OS for specific use-cases provides a better al-
ternative. Thereby, they present Tinkertoy, a collection of modules,
enabling developers to construct their own OS from predefined
building blocks. Consequently, Tinkertoy enables developers to
tailor an OS to specific applications and use-cases. Moreover, Wang
and Seltzer show that with such an OS up to 4 times less memory is

required at no performance loss compared to existing alternatives
like FreeRTOS and Zephyr.

2 BACKGROUND
In general, the purpose of an OS is to control the hardware and
enable applications to be executed effectively. OSs separate appli-
cations from the hardware they use [1]. Consequently, an OS is a
layer of software between applications and hardware. It provides
abstractions for applications to interact with the hardware it is
running on. To be able to perform these tasks, OSs include multiple
components.

2.1 Key Components of Operating Systems
The core of an OS containing the core components is called the
kernel. Its components include process management, memory man-
agement, I/O management, and inter-process communication man-
agement [1].

In order to manage multiple processes, the kernel must imple-
ment a process scheduler, determining when and how long processes
are allowed to execute. To be scheduled reasonably, processes are
often assigned priorities, from which the scheduler can determine a
suitable amount of execution time and when it should be executed.

For memory management, kernels usually implement a memory
manager. The memory manager determines how much memory is
allocated to a process, when and where it is allocated, and what
should be done in case the whole available memory is in use.

For I/O management, an I/O manager is implemented in kernels.
Its purpose is to handle input and output requests from processes
and enable processes to communicate with hardware devices in a
well-organized manner.

2.2 Related Operating System Concepts
There are many different OS concepts for embedded devices. Some
of these incluse Unikernels, Exokernels, Library Operating Systems,
and Real Time Operating Systems

Unikernels are lightweight kernels designed to run a single ap-
plication. By including solely the components necessary to run a
given application they can be considered a resource-efficient type
of OS [12]. Contrary to many other types of kernels, the focus of
Unikernels lies on application-level management of resources and
the removal of protection boundaries. However, as Unikernels are
designed to run a single application only, they do not have a broad
spectrum of use-cases.

Exokernels represent a different approach. In general, Exokernels
are small kernels that analog to Unikernels focus on application-
level resource management. However, Exokernels are not specifi-
cally designed to run a single application. By separating resource
management from resource protection, Exokernels allow applica-
tions to manage resources, while protecting them from each other
at the same time. Thereby, they significantly reduce the amount of
abstraction by the OS and shift components like virtual memory
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into userspace, enabling applications low-level access to hardware.
As a result, the runtime of applications can be reduced significantly
[4].

As Exokernels provide resource protection, but allow resource
management to be handled on application level, operating system
abstractions can be customized. Library Operating Systems use this
interface, enabling developers to build application-specific operat-
ing systems by extending, specializing, or replacing libraries [4].
Therefore, Library Operating Systems often use existing libraries
from which developers can assemble the OS to their needs.

A further Concept for IoT OSs are Real-Time Operating Systems
(RTOS). As the name suggests, RTOS are aimed at time-sensitive
operations. For example in health care, wearable electrocardiograms
should be able to detect irregularities in the patient’s heart rhythm
and notify the doctor as soon as possible [14]. Another example
of an area of application would be autonomous plant watering
systems, as one expects a plant to be watered as soon as the soil is
dry and not to be watered in case the soil moisture is high enough.
Examples of RTOS are FreeRTOS and Zephyr.

2.3 FreeRTOS and Zephyr
FreeRTOS is a widely used thread-based open-source RTOS imple-
mented in C with a small kernel. Within FreeRTOS, applications
are encapsulated as tasks and have their own stack. With the use
of C macros, its kernel can be modified providing some level of cus-
tomization. Developers are offered the option to enable or disable
kernel APIs using define macros in a given header file.

Equally to FreeRTOS, Zephyr is an RTOS, thread-based and im-
plemented in C. Sharing a lot of design features with Linux, Zephyr
offers multiple scheduling algorithms. Additionally, Zephyr pro-
vides more options for customization than FreeRTOS by using a
Kconfig interface [2], similar to Linux. Thus, developers can cus-
tomize scheduling algorithms, device drivers, and more.

As both FreeRTOS and Zephyr allow for disabling unrequired
functionality, they were compared to Tinkertoy in section 4. Fur-
thermore both OSs have an offical port for the emulated boards,
Wang and Seltzer used to evaluate their work.

3 TINKERTOY
Tinkertoy is a set of prebuild and customizable modules written
in C++20 [10] by Wang and Seltzer to enable developers to build
their own custom kernel for low-end devices as classified by IETF
[7]. Comparably to the concept of Exokernels, Tinkertoy puts the
creation and choice of abstractions in the hands of developers. How-
ever, Tinkertoy approaches this by enabling developers to design
the OS from a set of modules. Instead of exposing hardware to appli-
cations while still keeping the core functionality of the OS, Tinker-
toy represents a set of modules from which a use-case-specific OS
can be built to deal with resources efficiently. While FluxOSKit[5]
has a similar design concept by making it possible to build a new
system from a set of components, it does so by importing compo-
nents from other systems. As most of these components are not
resource-efficient enough for the devices Tinkertoy is targeted at,
Tinkertoy’s components are designed from the ground up.

3.1 Structural Composition
To enable developers to assemble their own OS, Tinkertoy offers a
set of modules, made up from the following:

• Constraints
• Scheduler
• Memory Allocator
• Context Switcher
• Execution State

• System Call
• Dispatcher
• Kernel Service Runtime
• Execution Models
• Task Control Block

These modules consist of a number of components, some of which
can be built from predefined building blocks. For example, the
scheduler consists of three components, Scheduling Policy, Event
Handler, and Task Constraints. The developer is enabled to build
each component from a set of generic building blocks resulting in
components behaving exactly the way the developer intends them
to.

3.2 C++ Features Used for Code Reusability and
Flexibility

To implement these generic building blocks, Wang and Seltzer
use three C++ specific features: templates, concepts and functors.
Using these concepts, Tinkertoy provides reasonable flexibility,
high reusability, and easy composability for its building blocks.
Furthermore, Tinkertoy’s runtime overhead is kept small at the
cost of compile time.

Templates are used to design the modules as generic as possible.
With the help of templates, components like the scheduler can be
defined generically, enabling it to schedule different kinds of tasks
on different systems.

Concepts define constraints on types. Multiple of them can be
assigned to a single template, enabling the developer to bind a set
of requirements to a type. Thereby, Tinkertoy formulates concepts
as specific as possible while still allowing for considerable potential.
As a result, concepts are used for example to allow a priority-based
scheduler to accept only task types overloading comparison opera-
tors.

Functors represent the last C++ feature used for the genericity
of Tinkertoy’s code. Functors are C++ classes that overload the func-
tion call operator and can be constrained by concepts. Furthermore,
they can be inlined by compilers, providing a performance benefit
compared to indirect function calls at runtime. Tinkertoy’s building
blocks are encapsulated in functors, allowing for the creation of
new building blocks from existing ones at compile time.

3.3 Details on More Customizable Modules
Some of Tinkertoy’s modules are highly customizable and offer
a variety of building blocks to be constructed from. One of those
modules is its scheduler which is constructed from the three com-
ponents Scheduling Policy, Event Handler and Task Constraints as
previously mentioned in section 3.1. Each of those components can
be built differently from a set of building blocks, and put together
using a builder class provided by Tinkertoy, resulting in a scheduler
behaving in exactly the desired way. Figure 1 shows the composi-
tion of the scheduler from three components, each of which can be
made up of a set of building blocks.
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Figure 1: Module Scheduler which can bemade up from three
components Policies, Constraints and Event Handlers. Each
Component can be constructed from a set of Building Blocks.

At its core, the scheduler decides which task should be executed
and for how long it should be executed. Thereby, the scheduler
watches over ready tasks held in one ormultiple queues and chooses
the next one based on its scheduling policy. As an example, a simple
First In First Out (FIFO) scheduler can be assembled by using the
FIFO queue for the policy. Furthermore, schedulable tasks must
inherit from the class Schedulable to be enqueued to the scheduler’s
queue. To enable the scheduler to react to scheduling events, the
event handler component needs to be specified. As can be seen
in Figure1, Tinkertoy provides 10 building blocks for the event
handler component, enabling developers to decide to which events
the scheduler can respond. For example, when building a kernel that
allows processes to create other processes andwait for them to yield,
or terminate, one would have to use Task Creation, Task Termination,
Task Yielded, Task Blocked and Task Unblocked as event handlers. An
example implementation of a scheduler for this purpose is shown
in Figure 2.

using Policy = PolicyWithEnqueueExtensions <FIFO , Counter >;
class CustomFIFOScheduler : public SchedulerAssembler <Policy ,

TaskCreation :: Cooperative :: KeepRunningCurrent <Task>,
TaskTermination :: Common ::RunNext <Task>,
TaskBlocked :: Common ::RunNext <Task>,
TaskUblocked :: Cooperative :: KeepRunningCurrent <Task>,
TaskYielded :: Common ::RunNext <Task>> {}

Figure 2: Example implementation of a scheduler for a sys-
tem without a timer, allowing processes to create other pro-
cesses and wait for them to finish.

For reasonable handling of tasks, Tinkertoy provides the module
Task Control Block, which also can be built from a set of building
blocks. Each task needs its own task control block, providing in-
formation like its priority or identifier. Tinkertoy provides a set of
components from which developers can build task control blocks
according to their needs. Furthermore, Tinkertoy provides compo-
nents to build task control block initializers and finalizers for these
task control blocks. Task control blocks have to meet a set of con-
straints, which can be achieved by the construction of components

provided by Tinkertoy. Thereby, task control blocks must specify a
type of stack with the help of stack components (e.g. Shared Stack)
and whether tasks are prioritizable with the help of further compo-
nents (e.g. Priority Level). In the running kernel, for task creation
and termination, corresponding task control blocks have to be allo-
cated or released. For that purpose, Tinkertoy provides initializer
and finalizer components for each task control block component.

Another customizable module of Tinkertoy is its Execution Model.
Tinkertoy generally supports two types of Execution Models,
thread-based Execution Model and event-driven Execution Model.
After defining task control blocks, developers can specify the exe-
cution model by exposing the respective system calls like thread
creation for a thread-based model or register/unregister events for
an event-driven model. In a thread-based Execution model, a typ-
ically large number of threads can handle tasks concurrently. In
addition, these threads are often short-lived [8]. As can be seen
in section 4, the thread-based execution model usually is a good
choice for devices like gateways where multiple concurrent threads
can translate messages. Unlike thread-based systems, event-driven
systems do not implement a large number of threads. In event-
driven systems, the control flow is determined by a set of events
that can occur and trigger the execution of corresponding tasks.
Thus, systems that can be expressed as state machines are usually
best implemented as event-driven systems which can be seen in
section 4. For each execution model, developers first need to define
task control blocks to enable the kernel to manage the execution of
tasks.

4 EVALUATION
In this section, Wang and Seltzer’s work is evaluated and compared
with FreeRTOS and Zephyr on the basis of memory usage and
runtime performance. For the benchmarking an automatic watering
system for a plant was chosen as a plausible setup that could take
place in the real world.

4.1 Watering System Setup
The watering system consists of three devices instantiated with
emulated Stellaris LM3S811 boards. The three devices are a moni-
tor, an actuator, and a gateway, each one running its own kernel
built with Tinkertoy. Since Tinkertoy currently does not support
networking, the devices communicate via UART.

In this setup, the monitor device has to keep track of the moisture
level in a pot for plants and inform the actuator whether it has to
start watering or it has to stop. It runs an event-driven kernel and
uses three events and three event handlers. Firstly, Periodic Timer
and the corresponding event handler Sensor Reader. Consequently,
the monitor device is able to measure the moisture level in timed
intervals. To inform the actuator device whether it has to water the
plant or not, two events Dry Soil andWet Soil and corresponding
event handlers Dry Handler andWet Handler are used.

The second device is the actuator controlling the gate of a water
bottle to start or stop watering the pot. Similarly to the Monitor,
it is realized using an event-driven kernel with three events and
three corresponding event handlers. The first two events are Start
Watering and Stop Watering and trigger the event handlers Open
Gate and Stop Gate resulting in the pot being watered or not. In case
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the water bottle is empty, the event No Water triggers the event
handler Signal Alert which then informs the gateway device.

The third device is the gateway device. The gateway uses a
thread-based kernel and runs three concurrent threads to translate
incoming Constrained Application Protocol (CoAP) or Hypertext
Transfer Protocol (HTTP)messages to be able to inform a user about
the watering system’s status. For the gateway kernel, a cooperative
scheduler able to handle task creation and blocked and unblocked
events was used. Furthermore, the kernel has a memory allocator to
provide the threads with respective stacks. Besides other modules,
an interrupt handler is needed to maintain a queue of threads and
inform the scheduler about the thread’s states.

4.2 Comparison with Alternatives
The three operating systems were evaluated in memory footprint,
flash footprint, active stack usage, and the round trip time of the
gateway kernel. As can be seen in Figure 3, the kernels implemented
with Tinkertoy use significantly less memory than the kernels im-
plemented in FreeRTOS and Zephyr. Accordingly, as shown in
Figure 4, Tinkertoy has a considerably lower flash footprint. This
reduced memory footprint is the result of Tinkertoy enabling de-
velopers to tailor the kernel to their needs with only the required
functionality. Consequently, the task control blocks of the monitor
kernel implemented using Tinkertoy are 12 bytes in size, while on
FreeRTOS and Zephyr, they take up 64 and 112 bytes. Although
Tinkertoy provides a better stack usage, the measured benefit was
not as significant as in flash and memory usage. Lastly, Wang and
Seltzer measured Tinkertoy’s gateway performance based on the
round trip time, as shown in Figure 5, to be comparable to FreeRTOS
and Zephyr.
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Figure 3: Memory Footprint in KB of the Monitor, Actua-
tor, and Gateway device for a plant watering system, imple-
mented with Tinkertoy, FreeRTOS and Zephyr running on
an Stellaris LM3S811 board emulate by the ARM Fast Models.
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Figure 4: Flash Footprint in KB of the Monitor, Actuator, and
Gateway device for a plant watering system, implemented
with Tinkertoy, FreeRTOS and Zephyr running on an Stel-
laris LM3S811 board emulate by the ARM Fast Models.
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Figure 5: Median and mean round trip time of the gateway
kernel calculated from 1000 measured samples.

5 CONCLUSION
Tinkertoy byWang and Seltzer, besides sharing some ideas with Ex-
okernels [4] and the FluxOSKit [5] and other IoT operating systems,
provides a novel approach in OS design for IoT devices by enabling
developers to build a custom OS from a set of predefined mod-
ules. Therefore, the code is written generically and highly reusable.
Consequently, with the help of Tinkertoy, developers can build a
use-case-specific OS, implementing solely the required functional-
ity in only a few lines of code. By only including the components
required for a specific use-case, Tinkertoy has a memory footprint
significantly smaller than FreeRTOS and Zephyr with no perfor-
mance loss. However, Tinkertoy still allows for improvements like



Seminar Paper: Operating System Support for Embedded Devices

support for nested hardware interrupts, multiple kernel stacks, and
networking. Furthermore, synchronization primitives like mutexes
are not yet provided by Tinkertoy.
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