Seminar Paper: Dynamic Clock Control

Tobias Haberlein

Friedrich-Alexander-Universitit Erlangen-Nurnberg (FAU)
tobias.haeberlein@fau.de

ABSTRACT

Modern embedded systems offer the ability to dynamically select
and configure different clock sources at system runtime. Dynamic
Voltage and Frequency Scaling (DVFS) systems can take advantage
of these capabilities and select a certain clock frequency and core
voltage depending on the current type of system load in order
to save power. This seminar paper presents two approaches by
Rottleuthner et al. and Chiang et al. that implement such DVFS
mechanisms on modern microcontroller platforms. The selected
approaches will then be compared and discussed in more detail.

1 INTRODUCTION

Today, the energy consumption of embedded systems plays an
increasingly important role. Microcontroller Units (MCUs) are de-
ployed in environments where either a reliable source of power
cannot be guaranteed or only limited battery energy is available [8].
In order to consume as little energy as possible, many embedded
applications therefore follow the race-to-idle strategy [5]: During
active periods of the MCU, a high clock frequency is used to reach
a low power sleep mode as quickly as possible. This approach is
easy to implement since the clock frequency is determined before
runtime and statically configured for the application. However, this
causes typical IoT-applications to waste energy, especially if they
consist of both compute-intensive operations and I/O-bound opera-
tions (e.g. reading values from an external sensor). This is because
compute-intensive operations are most energy-efficient when a
high frequency clock is used, while I/O-bound operations are most
efficient when a low frequency clock is used [3]. Depending on the
workload of the system, energy could be wasted if the application
uses only one preconfigured clock frequency.

Modern MCU platforms offer the ability to change the currently
used frequency by selecting between different clock sources dy-
namically during runtime. The available clock sources can differ
not only in terms of clock frequency and power consumption, but
also in terms of accuracy and temperature stability [12]. Adaptive
software can take advantage of these configuration possibilities
through Dynamic Voltage and Frequency Scaling (DVFS), which is
a mechanism that changes the core frequency and voltage during
runtime depending on the current system load.

Changing the configuration of the active system clock is not al-
ways without difficulty: On the one hand, a frequency change may
not always be possible at any point in time due to constraints of
peripherals such as buses, sensors, and flash controllers [10]. As an
example, changing the clock frequency during a data transmission
via UART may lead to corrupt data packets if data is sent with the
wrong baudrate after the frequency change. On the other hand, pe-
ripherals may place certain requirements on the clock used, like an
Analog-to-Digital-Converter (ADC) that needs a specific minimum
frequency to achieve a certain sample rate.

Another problem is the lack of software support for DVFS in com-
mon IoT operating systems [10]. Most systems only allow a stati-
cally preconfigured clock, only some of them support some kind of
clock configuration change during runtime, albeit with many limi-
tations. This is due to the fact that most MCU platforms come with
complex clock trees consisting of components such as frequency
multipliers, gates and multiplexers. Changing the clock frequency
is therefore not a simple task, but can require the reconfiguration
of many components in this tree. Mappings of platform-dependent
clock trees at the hardware abstraction layer do not fully exist yet.

In this paper, two different proposed solutions for implementing
DVEFS in modern IoT operating systems are presented and discussed.
The first approach by Rottleuthner et al. [10] focuses more on the
abstraction of hardware-specific clock trees, while the approach
of Chiang et al. [3] revolves around complying with constraints
set by peripherals and finding the right time to change the clock
configuration.

In the following, Section 2 discusses the advantages and chal-
lenges of DVFS on MCUs in more detail. Section 3 presents Scale-
Clock [10], a system that introduces an abstract model of platform-
specific clock trees to be used for clock configuration in the IoT op-
erating system RIOT. Section 4 focuses on choosing the right clock
configuration for DVFS at the right time, taking a closer look at the
two solutions mentioned above [3, 10], which are then compared
in Section 5. In Section 6, similar approaches are briefly discussed
before concluding with a summary and outlook in Section 7.

2 DYNAMIC VOLTAGE AND FREQUENCY
SCALING (DVFS)

DVES is a technique used by modern operating systems to save
energy when running applications by dynamically adjusting the
frequency and voltage of the system at runtime. It takes advantage
of the fact that power consumption is heavily dependent on the core
clock frequency and voltage. This section describes the situations
in which it is beneficial to adjust the clock frequency on modern
MCUs.

2.1 Categorizing Power Consumption

The power consumption of CMOS chips in microcontrollers can be
divided into a static and a dynamic part [2]. Static power consump-
tion is caused by leakage currents through the transistors, even
when they are not actively switching. Dynamic power consumption
on the other hand is caused by switching activity in the system
that causes capacitors to charge and discharge. Dynamic power
consumption depends on the clock frequency, whereas static power
consumption is independent of the frequency.

By dynamically adapting the clock frequency to the operations
being performed, the system can save power. Compute-intensive op-
erations should be executed at the highest possible clock frequency.
This minimizes the static part of the power consumption, as the

time spent per operation gets smaller at higher frequencies. I/O-
bound operations, however, such as reading values from an external
sensor, should be performed at the lowest possible clock frequency.
In this case, the dynamic power consumption is minimized.

DVES systems ensure that the appropriate clock frequency is
used based on the current type of system load as described above.
They then adjust the core voltage to the lowest possible value, which
is a function of the selected frequency. For most MCUs however,
the potential energy savings from changing the core voltage are
rather limited. Instead, most savings are achieved by choosing an
optimal clock frequency via Dynamic Frequency Scaling (DFS) [10].

During periods when the peripherals are inactive and the CPU
is idle, the MCU can enter a low-power sleep mode to save energy.
This is usually the responsibility of the operating system or the
application developer and is not covered by DVFS. DVFS is only
relevant during periods when the system is active.

2.2 Challenges in Embedded Systems

Existing DVFS systems, such as the one used in Linux, cannot be eas-
ily ported to microcontrollers, as they were often not designed with
the memory and computational constraints of embedded systems in
mind [10, 13]. In addition, unlike desktop platforms, modern MCU
platforms offer a wide variety of different clock sources, each of
which can have different properties. These clocks are configurable
and dynamically switchable at system runtime [12]. New DVFS
approaches must therefore not only take the constraints and limita-
tions of microcontrollers into account, but also the wide variety of
clock topologies of different MCU platforms.

3 MAPPING CLOCK TREES IN SOFTWARE

In order to save power with DVFS, it is necessary to have software
support to be able to switch between different clock configurations
of the underlying hardware platform. Rottleuthner et al. present an
OS component called ScaleClock for this purpose that abstracts the
hardware-specific clock trees by identifying some basic building
blocks [10]. With ScaleClock, an application developer can simply
select a desired (valid) frequency via an operating-system interface,
whereupon a suitable clock-tree configuration is automatically se-
lected and set. It is even possible to use ScaleClock to dynamically
adjust the core clock frequency depending on the current type
of system load. This is discussed in Section 4.2. The mapping of
hardware-specific clock trees in ScaleClock is described in detail in
the following sections.

3.1 Identifying Building Blocks

In principle, the clock trees of microcontroller platforms are very
different. Some platforms offer very complex configuration options
for various clocks (e.g. STM32 [12]), while others offer little or no
customization options (e.g. nRF52 [7]). Despite these considerable
differences, almost all clock trees can be described in software by
using just a few basic building blocks. Figure 1 shows an example
of what such a clock tree might look like.

A source node marks the start of each clock signal within the
clock tree. This is usually an internal or external oscillator. The gate
nodes (o) are the simplest elements of the clock tree. Depending
on their configuration, they may or may not forward their input

Tobias Héberlein

HSE

Figure 1: Simplified example of a clock tree, based on the
STM32L47x platform [12]. The clock signal is generated by

on the left and makes its way through vari-
ous scalers, multiplexers and gates. It finally arrives at the
consumer nodes on the right.

signal to their output port. Multiplexer nodes (MUX) have multiple
clock signal inputs and forward one of them to their output. In the
example in Figure 1, the CPU clock can be driven either by a Phase-
Locked Loop (PLL), by the variable MSI oscillator or by an external
high frequency oscillator (HSE). Scaler nodes are either multipliers
(3%) or dividers (). Multipliers multiply the incoming clock signal
by a fixed or configurable factor, whereas dividers divide the signal
by a factor. These nodes are important for peripherals such as I>C
or UART (consumer nodes), which expect a certain frequency that
does not necessarily match the current system clock frequency.

According to the authors of ScaleClock, the presented basic com-
ponents are generally sufficient to map all elements of a hardware-
specific clock tree. More complex clock structures do exist, but they
can usually be mapped by simply combining several of the basic
components.

3.2 Switching between Clock Configurations

A path from a source node to an end node in the clock tree corre-
sponds to a specific topology. In ScaleClock it is possible to switch
between several of these topologies at runtime. A specific clock
frequency at a consumer node can then be set by changing the
scaling factors within the scaler nodes of the topology.

Depending on the currently active clock topology, switching to a
new core frequency can be as simple as changing one or more scal-
ing factors. In more complex cases, the system has to transition to
a new topology by reconfiguring the output of a multiplexer node.
Some platforms may however prohibit the configuration of active
clock nodes, which can increase the complexity of transitioning
from one to another topology. Furthermore, some topologies might
have source clocks such as PLLs that require a certain amount of
time to stabilize and deliver unstable frequencies in the meantime
[12]. ScaleClock calls these cases complex transitions and handles
them as follows: If it is not possible to switch directly between
a source and a target clock configuration, an intermediate con-
figuration is used temporarily. The system first switches to this
intermediate configuration, and it only then applies the pending
changes to the clock nodes of the target configuration. Afterwards,
the system switches to the target configuration and disables nodes
of the old configuration that are no longer in use.

Seminar Paper: Dynamic Clock Control

Driver / Applicati A

Clock Manager

|Con~F:i.guration|| Transition |

{ Abstract Clock J

| Gate || Scaler |

Mux

platform-specific code/

[Hardware |

abstraction level

Figure 2: Relevant components of the ScaleClock architecture
based on the publicly available source code [9].

3.3 ScaleClock Implementation

ScaleClock has been developed as a kernel module for the IoT oper-
ating system RIOT [9]. The most relevant parts of the architecture
are shown in Figure 2, which is based on the publicly available
source code of ScaleClock [9]. Different abstraction levels are pro-
vided to interact with the clock system. At the lowest level are
the basic building blocks for mapping the clock tree in software,
which were introduced in Section 3.1 (i.e., mux, scaler, gate, ...).
These blocks are used in the platform-dependent part of the source
code to reconstruct the hardware-specific clock tree according to
datasheets of the manufacturer. It should be noted that even within
a specific hardware platform, the exact structure of the clock tree
may vary slightly from device to device. For example, the NUCLEO-
L476RG development board which has been used by the authors
of the paper can optionally be equipped with an external high-
frequency oscillator [11]. ScaleClock uses predefined preprocessor
macros that can be set by the application developer in order to distin-
guish among these different configuration options. In addition, the
platform-specific part of the code also allows for the specification
of possible restrictions with regard to maximum clock frequency
and minimum voltage of clock nodes. Preferred topologies can also
be specified, as well as the power consumption of each clock source,
which plays a role in the selection of a specific clock configuration
when using DVFS.

The Abstract Clock interface of ScaleClock allows platform-inde-
pendent access to the clock tree. For example, the scaling factors of
scaler nodes or the output of multiplexer nodes can be changed via
the interface. At this level of abstraction, however, no additional
restrictions are taken into account. This means that if a clock node
has certain limitations regarding its maximum clock frequency, a
higher clock frequency could still be set by increasing the scaling
factors of its ancestor node(s).

The Clock Manager is located at the highest abstraction layer
and provides methods that take a desired target frequency and then
automatically select and configure a suitable clock topology. All
restrictions within the clock tree are taken into account. Periph-
eral drivers may use the Clock Manager to temporarily block clock
configuration changes, for example during data transfers. Addi-
tional driver constraints such as minimum frequency limitations
are currently not handled by ScaleClock.

As the available memory space on MCUS is severely limited, special
attention has been paid to a memory-efficient implementation of
ScaleClock. For example, lookup tables are used wherever possible
to reduce redundancy. Since most clock nodes can be configured
using only a handful of memory-mapped registers, ScaleClock saves
the memory address of these registers in one central lookup table
and stores only a tiny index in the clock nodes. Further memory
saving techniques have been employed which are not discussed in
more detail here. All in all, the authors claim that with ScaleClock,
the total memory required by the MCU firmware is increased by
only about 5 %.

4 CHOOSING THE RIGHT CLOCK

In order to maximize power savings with DVFS, the clock con-
figuration of the MCU should be adjusted to the current type of
system load at the right time. As described in Section 2.1, when the
current application needs to wait for peripherals, a low core clock
frequency should be selected. Conversely, when the application is
performing computationally intensive operations, it is best to use
the highest possible frequency. In the following, two kernel-based
dynamic clock-management systems are presented, each of which
handles the distinction between these two cases differently.

4.1 Power Clocks

Chiang et al. present Power Clocks [3], a kernel-based DFS system
that utilizes the key insight that compute-intensive operations are
efficiently executed at fast clock frequencies, while I/O-heavy op-
erations are most efficiently executed at lower clock frequencies.
With Power Clocks, the operating system kernel dynamically se-
lects the most energy-efficient clock based on the current number
of active and requested peripherals.

4.1.1 Peripheral Constraints. In Power Clocks, the peripheral dri-
vers must request a clock from the kernel before they are allowed to
begin with their operation. In their request, they can specify certain
requirements that the clock must meet. For example, they can re-
quire a certain minimum frequency, or only allow clocks that have
a certain accuracy. Peripheral drivers can also specify whether they
can cope with sudden clock changes during operation by setting a
no_jitter-flag. Each peripheral has its own set of requirements:
For example, drivers for ADC or UART are usually highly depen-
dent on the current clock frequency and cannot tolerate abrupt
clock changes. Drivers for SPI and 12C, on the other hand, may be
able to handle them, since the data transfer in these protocols is
controlled by a dedicated clock line which is independent of the
system-clock frequency.

4.1.2 Architecture. Power Clocks has been implemented for the
IoT operating system Tock. It consists of two main components: The
ClockManager is the central part of the DFS system. It takes care of
selecting the most efficient clock during system runtime taking into
account the constraints of the peripheral drivers that act as Clock-
Clients. Each ClockClient must register with the ClockManager and
inform it of its constraints before it starts operating.

4.1.3 Clock Change Algorithm. When an I/O operation is to be
performed, the peripheral driver (ClockClient) must send a clock
request to the central ClockManager. The ClockManager will only

grant a request immediately under certain circumstances: To ensure
that pending clock requests are not further delayed, the request
must not have the no_jitter flag set. In addition, the client’s re-
quested minimum clock frequency must be compatible with the
minimum clock frequencies of all other pending ClockClients.

If one of the above conditions is not met when a clock request is
sent, the request is placed in a central FIFO queue. In this case, the
ClockClient must wait at least until the next time the ClockManager
selects a new clock frequency. A new clock frequency is chosen after
the current I/O operation is finished and all threads of the system
are yielded. This avoids situations where the ClockManager selects
a new frequency, e.g. 1 MHz, but shortly after that a new clock
request with a higher minimum frequency arrives, e.g. 4 MHz. By
waiting until all threads in the system have yielded their operation,
the ClockManager can make an optimal clock selection based on a
global view of all requested I/O operations.

When selecting a new clock frequency, the ClockManager iter-
ates over the queue from front to back and gradually forms the
intersection of all clock frequencies of the pending requests. It starts
with the supported clock frequencies of the first request, then forms
the intersection of all supported clock frequencies of the second
request, and so on. If at one point the intersection returns an empty
result, the ClockManager skips the current request. The next time
the clock selection takes place, this request will be the first one in
the queue. From the final intersection, the ClockManager chooses
the lowest possible clock frequency and configures the system clock
accordingly. It then calls the callback function of each ClockClient
whose clock request was granted, indicating to them that they can
now start with their I/O operations.

If no ClockClient is currently running and there are no pending
clock requests, Power Clocks assumes that the system is performing
compute-intensive operations. In this case, it wants to switch to
the highest possible clock frequency as quickly as possible in order
to remain energy-efficient. However, an immediate clock change
can lead to the problem of thrashing. This occurs when the system
constantly switches between fast and slow clock speeds between
I/O operations that are interrupted by short periods of driver code
execution. Since clocks have to stabilize, and the clock change itself
takes some time and consumes power, the ClockManager waits
until the time quantum of the current thread has expired before
performing a clock change. In Tock, the time quantum of threads is
set to 10 ms, which the authors of Power Clocks believe is a good
heuristic for estimating when the MCU is performing compute-
intensive tasks. If no new clock requests have arrived after this
time, the ClockManager automatically changes the clock frequency
to the highest possible setting.

4.1.4 Clock Configuration. Clock configuration in Power Clocks
is an implicit mechanism that the authors do not describe in de-
tail in the paper. All relevant clock configurations have been pre-
determined for each platform and are statically defined in the code.
The system therefore only has to choose between one of the few
predefined clock configurations at runtime. However, as explained
in Section 3, configuring the core clock of microcontrollers can be
a challenging task due to their intricate clock trees. Power Clocks
lacks a more sophisticated approach for clock configuration, such
as the one presented by Rottleuthner et al.

Tobias Héberlein

4.2 ScaleClock

ScaleClock [10] chooses a fundamentally different approach to de-
termine the time of the clock change. It introduces a new metric that
is used by the system to decide per thread if it should be executed
at a high or low frequency.

4.2.1 Performance Utilization. ScaleClock introduces a new metric
called Performance Utilization (PU) to decide whether to run a thread
ata high or low clock frequency. The metric is a measure of how well
the execution time of the thread decreases as the clock frequency
increases. Equation 1 shows the calculation rule for the PU metric.
The active execution time tp,, of the thread at a frequency F; is
set in relation to the execution time at a higher frequency F,.

thusy(F1) F
el Aty S AP (1)
tbusy(FZ) F

Threads with a high PU value near 1 have a perfect scalability. At
twice the clock speed, they run twice as fast. These threads are exe-
cuted at the fastest possible clock frequency, so they are as energy
efficient as possible. Threads with a relatively low PU value near 0,
on the other hand, have very poor scalability. If the clock frequency
is doubled, their execution time is only minimally reduced. This is
typical for threads that need to wait for I/O operations to complete.
Such threads are executed most efficiently at the lowest possible
clock frequency.

4.2.2 DVFS. To dynamically scale the clock frequency at system
runtime, ScaleClock needs to know the PU value for each thread.
The metric is determined at system startup for all threads by oppor-
tunistically changing the clock frequency during operation. The
system then collects data for each thread at each frequency, such
as the number of context switches and the busy and idle times. To
do this, ScaleClock interacts with the operating system’s scheduler.
Afterwards, it is able to calculate the PU value in order to find an
optimal target frequency for each thread. The optimum frequency is
then set by the system’s ClockManager before a thread is scheduled,
using the interface described in Section 3.3.

ScaleClock is also able to minimize the core voltage of the sys-
tem if desired. All constraints on the minimum voltage per selected
clock frequency are thus hard-coded into the platform-specific code
of ScaleClock [9]. Adjusting the voltage, however, is not always de-
sirable, especially when using flash memory. In this case, lowering
the core voltage may lead to an increase in read latency, as addi-
tional wait states have to be introduced when the CPU accesses the
flash memory. ScaleClock therefore gives the application developer
the option to choose between Fast Flash or Low Voltage in such
cases.

5 EVALUATION

Both Power Clocks and ScaleClock promise significant power sav-
ings with their approaches over statically configured clock frequen-
cies. Both systems offer the ability to use DFS to automatically
adapt the system’s clock frequency to the type of operations being
performed without requiring the application developer to write any
additional code. In the following, the two approaches are evaluated,
and their limitations are shown.

Seminar Paper: Dynamic Clock Control

A /~ Static LF clock

g Static HF clock

3 /
13 g" Power Clocks
Z 2 Ideal configuration
L
2 0
g O
O &

-

Q

=]

&3]

>
Time

Figure 3: Sketch of the cumulative energy consumption for a
typical IoT application. Static clock frequencies are compared
to Power Clocks and to a hand-tuned, ideal clock configura-
tion.

5.1 Power Clocks

The way the Power Clocks algorithm works is quite simple: If at
least one I/O operation is currently being performed or at least one
I/O operation is pending, Power Clocks selects the lowest possible
clock frequency that satisfies the constraints of all clock requests.
If no I/O operations are being performed, the fastest possible clock
frequency is used.

Figure 3 is a sketch showing the cumulative energy consump-
tion for a typical IoT application where Power Clocks can save a
lot of energy. The application first collects data from an external
sensor and then performs calculations on the read data. Several
configurations of the application are compared with each other. In
the case of the statically selected high-frequency (HF) clock, the
system consumes the most energy. This is because a lot of energy is
wasted waiting for the sensor to be read. The statically selected low
frequency (LF) clock is more energy efficient during these periods,
but is inefficient when the MCU is performing CPU-intensive calcu-
lations. With DFS, Power Clocks is able to combine the advantages
of both static approaches and thus comes very close to the energy
consumption of an ideal hand-tuned configuration. Overall, the
authors claim that Power Clocks can achieve more than 25 % in
energy savings compared to using a static clock frequency.

Power Clocks can save energy in many typical IoT use cases, but
it also has some limitations, so that it may not always be the optimal
solution. If an application consists only of CPU-intensive opera-
tions, then the selection of a static high-frequency clock makes
the most sense. In such cases, the use of Power Clocks would add
unnecessary overhead. If, on the other hand, an application con-
stantly uses peripherals for which the no_jitter-flag is set, other
peripherals could potentially starve to death if they expect a dif-
ferent clock frequency. This could be the case, for example, if an
ADC is constantly sampling an input signal while another thread is
simultaneously trying to read from an external sensor via a protocol
that requires a different clock configuration.

In contrast to ScaleClock, Power Clocks is not able to dynamically
adjust the system’s core voltage. Also, the selection of the clock is
an implicit mechanism that is not described further by the authors.
An abstraction of hardware-specific clock trees as in ScaleClock
does not exist.

PU
assessment DFS on DFS off

15
210
5]
=
3
Q

5

I T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

Figure 4: Power consumption of a sample application that
consists of one CPU-bound thread and one I/O-bound thread
while using ScaleClock. This test was performed on a Nucleo-
L476RG from STMicroelectronics [11]. Power measurements
were taken using a PPK2 from Nordic Semiconductor [6].

5.2 ScaleClock

ScaleClock offers an abstraction of hardware-specific clock trees in
the operating system and thus provides a platform-independent in-
terface for clock configuration. The authors of the paper implement
the system for two hardware platforms, and explain that support
for other platforms is possible with a few new lines of code.

Figure 4 shows the power consumption of an example applica-
tion that is using the ScaleClock DFS mechanism. The application
consists of two threads that follow a producer-consumer pattern.
Thread 1 reads data from a sensor via SPI and sends it to thread
2, which then performs calculations on this data. The first second
of the system runtime consists of the PU assessment phase. Both
threads are executed at different clock speeds in order to obtain
as many data points as possible to calculate the PU metric. After
the assessment phase, a PU value has been determined for both
threads: Thread 1 has a low PU value and will therefore be exe-
cuted at a low clock frequency later on. Conversely, thread 2 has
a high PU value and will be executed at a high clock frequency.
ScaleClock takes care of changing the clock frequency before each
thread is scheduled. This can be clearly seen in the figure as the
power consumption alternates between high and low values. In
the last phase, DFS was disabled and the clock was set to a static
frequency of 80 MHz. As expected, the power consumption is sig-
nificantly higher in this case, even though the thread execution
time is only slightly lower than in phase 2. Overall, the authors
claim that ScaleClock could reduce the energy consumption of the
device by up to 40 %, depending on the use case.

Unlike Power Clocks, ScaleClock determines the time of a clock
change not by keeping track of the number of globally active /
pending I/O operations, but via the PU metric on a per-thread
basis. This has two major drawbacks:

(1) Determining the PU value per thread is time and, therefore,
energy consuming, as different clock frequencies have to be
tried out during system startup. However, it should be noted
that it is not necessary to run this clock-configuration test
at every startup, instead the application developer could run
the PU assessment once and then hardcode the calculated
values.

(2) ThePU value only makes sense for threads that have exactly
one task. As soon as a thread performs both CPU-intensive
and I/O-intensive operations, energy is wasted because
ScaleClock only selects one clock frequency per thread.
The application developer must be aware of this limitation.

Another disadvantage of ScaleClock is that it ignores driver con-
straints. In its current form, peripheral drivers have no way of
communicating their minimum and maximum clock frequencies
to the system. The authors state that in such cases the relevant
peripheral devices can be operated within their own clock domain.
However, this would mean that some benefits of using a single
clock source for the whole system would be lost, as using more
clock sources also consumes more power.

Finally, it should be noted that switching between different clock
configurations is a time-consuming task. Not only the actual config-
uration change takes time, but also the reinitialization of code for
peripherals and timers. The application developer must therefore
be careful to create threads that are active long enough to recoup
these time and energy costs.

5.3 Combining Both Approaches

The two approaches presented for dynamically adjusting the clock
frequency have different advantages and disadvantages. Compared
to ScaleClock’s PU metric, the Power Clocks algorithm for selecting
the correct system clock incurs a lower time overhead and is inde-
pendent of the individual thread’s implementation. It also considers
constraints of peripheral drivers. ScaleClock, on the other hand,
provides a powerful and abstract interface that can interact with
and configure the underlying hardware-specific clock trees. In the
future, systems that use a combination of both approaches are con-
ceivable. Parts of the Power Clocks algorithm could be integrated
into the already well-structured code base of ScaleClock, combining
the best aspects of both approaches.

6 SIMILAR APPROACHES

Dynamic power management has been an active field of research
for many years, not only for ultra-low-power microcontrollers, but
also for handheld platforms and devices that use energy harvesting.
In the following, similar approaches to the two presented DVFS
systems are briefly introduced.

6.1 Using Hardware Event Counters

Weissel and Bellosa propose an energy-aware scheduling policy
for non-realtime systems called Process Cruise Control [14]. Very
similar to ScaleClock and Power Clocks, they have found out that
when the CPU has to wait, it is more energy efficient to run it at
a lower frequency. The authors use hardware event counters to
determine on a per-thread basis whether the system should use a
low or a high clock frequency. As a primary indicator, they use the
memory requests per clock cycle event to find out if a thread could
benefit from a reduction in clock speed. This approach is similar to
the one used in ScaleClock, where the PU metric correlates with
the most efficient clock frequency of a thread. In contrast, however,
Process Cruise Control is able to dynamically update its metrics
while the thread is running, whereas the PU value of a thread in
ScaleClock is only determined once.

Tobias Héberlein

6.2 Intermittent Devices

Ahmed et al. propose a DVFS approach for intermittently-com-
puting devices called D?VFS [1]. It takes into account the char-
acteristics of the capacitors used in such devices, whose voltage
drops much faster than in conventional batteries, as the devices
extract energy from them. The authors explain that using static
high-frequency clocks is generally more energy efficient, however,
these clocks can only operate over a limited range of high voltages.
As a result, if the supply voltage drops below a certain threshold,
the device will shut down. Static low-frequency clocks can operate
over a much wider supply voltage range, but using them all the
time wastes energy, as discussed in the sections above. D?VES is
a runtime technique that solves these issues by dynamically re-
configuring the clock frequency according to the current supply
voltage. It uses voltage detectors in hardware that fire an interrupt
as soon as a certain threshold is crossed. The main difference of
this approach compared to ScaleClock and Power Clocks is that it
is reactive and does not consider the current application workload.

6.3 Timing and Energy Requirements

One aspect that has been neglected so far is the determination of
Worst Case Execution Times (WCET) and Worst Case Energy Con-
sumption (WCEC) in order to meet timing and energy requirements
of applications. Dengler et al. present a new approach called Fusion-
Clock that can handle time-triggered schedules and generate code
to dynamically reconfigure the system’s clock tree [4]. FusionClock
uses a clock-tree-reconfiguration graph that pays special attention
to the latency and energy consumption of transitioning between
different clock configurations. Using minimal-flow analysis through
this graph, FusionClock is able to find the worst-case-optimal en-
ergy demand of the application while still meeting its timing-related
deadlines. Unlike ScaleClock and Power Clocks, the approach of
Dengler et al. is able to give static runtime guarantees and can find
resource-optimal clock-tree configurations. This approach, how-
ever, requires a periodic task model, which is not suitable for all
IoT applications.

7 CONCLUSION AND OUTLOOK

Modern MCU platforms offer the ability to dynamically change the
clock configuration at system runtime. The two presented DVFS
systems ScaleClock and Power Clocks make use of this functionality
to select the most energy-efficient clock frequency depending on
the current system load. The authors of each approach therefore
focused on different aspects. ScaleClock deals with the mapping
of platform-dependent clock trees in the operating system kernel.
PowerClock instead focuses on choosing the right clock at the right
time, taking into account all peripheral constraints. The authors of
the paper show that their algorithms can achieve energy savings
of up to 40 % compared to statically chosen clock frequencies. As
both DVFS approaches have been developed at operating system
level and remain largely hidden from the application developer, it
is quite conceivable that they could be integrated into popular IoT
operating systems in the future. A combination of both approaches
is also imaginable, using ScaleClock as the interface to modify the
clock configuration and Power Clocks to select the right clock at
the right time.

Seminar Paper: Dynamic Clock Control

REFERENCES

(1]

Saad Ahmed, Qurat ul Ain, Junaid Haroon Siddiqui, Luca Mottola, and Muham-
mad Hamad Alizai. 2020. Intermittent Computing with Dynamic Voltage and
Frequency Scaling. In Proceedings of the 2020 International Conference on Embed-
ded Wireless Systems and Networks. 97-107.

Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. 2016.
Energy-Aware Scheduling for Real-Time Systems: A Survey. ACM Trans. Embed.
Comput. Syst. (2016). https://doi.org/10.1145/2808231

Holly Chiang, Hudson Ayers, Daniel Giffin, Amit Levy, and Philip Levis. 2021.
Power Clocks: Dynamic Multi-Clock Management for Embedded Systems. In
Proceedings of the 2021 International Conference on Embedded Wireless Systems
and Networks. 139-150.

Eva Dengler, Phillip Raffeck, Simon Schuster, and Peter Wagemann. 2023. Fusion-
Clock: Energy-Optimal Clock-Tree Reconfigurations for Energy-Constrained
Real-Time Systems. In 35th Euromicro Conference on Real-Time Systems (ECRTS
2023). 6:1-6:23.

David HK. Kim, Connor Imes, and Henry Hoffmann. 2015. Racing and Pacing
to Idle: Theoretical and Empirical Analysis of Energy Optimization Heuristics.
In 2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks,
and Applications. 78-85.

Nordic Semiconductor [n. d.]. Power Profiler Kit II. Nordic Semiconductor. https://
www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
Nordic Semiconductor 2018. nRF52840 Product Specification. Nordic Semiconduc-
tor. https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.0.pdf v1.0.

—_

8]

—

9]

(10]

(13]

(14]

Tifenn Rault, Abdelmadjid Bouabdallah, and Yacine Challal. 2014. Energy effi-
ciency in wireless sensor networks: A top-down survey. Computer Networks 67
(2014), 104-122.

Michel Rottleuthner. 2023. A ScaleClock Implementation for RIOT. https://github.
com/inetrg/RIOT/tree/ScaleClock

Michel Rottleuthner, Thomas C Schmidt, and Matthias Wahlisch. 2023. Dynamic
Clock Reconfiguration for the Constrained IoT and Its Application to Energy-
Efficient Networking. In Proceedings of the 2022 International Conference on
Embedded Wireless Systems and Networks. 168-179.

STMicroelectronics 2020. User Manual: STM32 Nucleo-64 boards (MB1136). STMi-
croelectronics. https://www.st.com/resource/en/user_manual/um1724-stm32-
nucleo64-boards-mb1136-stmicroelectronics.pdf 14.0.

STMicroelectronics 2021. STM32L47xxx, STM32L48xxx, STM32L49xxx and
STM32L4Axxx advanced Arm®-based 32-bit MCUs. ~ STMicroelectronics.
https://www.st.com/resource/en/reference_manual/rm0351-stm32147xxx-
stm32148xxx-stm32149xxx-and- stm32l4axxx-advanced-armbased- 32bit-mcus-
stmicroelectronics.pdf Rev. 9.

Mike Turquette. [n.d.]. The Common Clk Framework. https://www.kernel.org/
doc/Documentation/clk.txt

Andreas Weissel and Frank Bellosa. 2002. Process Cruise Control: Event-Driven
Clock Scaling for Dynamic Power Management. In Proceedings of the 2002 In-
ternational Conference on Compilers, Architecture, and Synthesis for Embedded
Systems. 238-246.

https://doi.org/10.1145/2808231
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.0.pdf
https://github.com/inetrg/RIOT/tree/ScaleClock
https://github.com/inetrg/RIOT/tree/ScaleClock
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0351-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0351-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0351-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.kernel.org/doc/Documentation/clk.txt
https://www.kernel.org/doc/Documentation/clk.txt

	1 Introduction
	2 Dynamic Voltage and Frequency Scaling (DVFS)
	2.1 Categorizing Power Consumption
	2.2 Challenges in Embedded Systems

	3 Mapping Clock Trees in Software
	3.1 Identifying Building Blocks
	3.2 Switching between Clock Configurations
	3.3 ScaleClock Implementation

	4 Choosing the Right Clock
	4.1 Power Clocks
	4.2 ScaleClock

	5 Evaluation
	5.1 Power Clocks
	5.2 ScaleClock
	5.3 Combining Both Approaches

	6 Similar Approaches
	6.1 Using Hardware Event Counters
	6.2 Intermittent Devices
	6.3 Timing and Energy Requirements

	7 Conclusion and Outlook
	References

