
Seminar Paper: Battery-Free Game Boy
Florian Koch

Friedrich-Alexander-Universität Erlangen-Nürnberg

ABSTRACT
Relying on batteries as power sources can often be undesirable
due to their contribution to the increased size and weight of elec-
tronic devices, as well as the inconvenience associated with charg-
ing. Moreover, the batteries themselves and the energy required
for recharging are often environmentally unfriendly. However, at-
tempting to operate electronic devices without a consistent and
stable power source poses significant challenges.

This paper explores the design of a deeply interactive device,
specifically a Game Boy, to achieve energy self-sufficiency without
relying on a battery. The investigation involves examining various
methods for power generation, enhancing the device’s energy effi-
ciency, and introducing a novel system called MPatch to address
memory loss caused by power outages. Subsequently, the paper
presents test results and evaluates the gaming console based on
these findings.

1 INTRODUCTION
In an era marked by the urgent global challenge of climate change,
the intersection of technology and environmental responsibility
becomes a focal point of paramount importance. The prolifera-
tion of electronic devices in our everyday lives not only results
in increased energy consumption, contributing to a higher CO2
footprint, but also underscores the pressing need for greener en-
ergy sources. Furthermore, the devices themselves could operate
much more energy efficient[5]. The reliance on batteries, a common
power source for these devices, introduces additional detrimental ef-
fects on our planet. Beginning with the extraction of necessary raw
materials, the mining process often leads to habitat destruction and
deforestation. Moreover, the manufacturing process is extremely
energy-intensive, and batteries contain hazardous materials that
pose a significant risk to the environment upon disposal[7]. Un-
fortunately, recycling is infrequently practiced due to its inherent
difficulty. Instead, batteries are typically either deposited in large
landfills or incinerated. Addressing these issues is imperative for
humanity to preserve a sustainable and undamaged planet.

One factor that could be optimized involves minimizing re-
liance on batteries and instead designing devices to be energy
self-sufficient, utilizing the various forms of energy that are om-
nipresent, such as light, heat, or motion. Particularly for compact
devices like phones, watches, or handheld consoles, which have
relatively modest energy requirements, exploring self-sufficient
power solutions holds significant promise. Eliminating the need for
batteries also presents additional advantages, as it reduces both the
size and weight of the device, a practical consideration for handheld
devices. The absence of battery dependence eliminates the necessity
for regular charging, a considerable advantage for devices intended
for on-the-go use.

A pioneering step toward interactive, battery-free intermittent
systems with demanding memory preservation needs was taken by
Jasper de Winkel et al. with their creation of the battery-free Game

Boy named ENGAGE. This innovative device aims to deliver an
authentic gaming experience even during power outages, ensuring
that players can continue their game without having to restart.
The gaming industry continues to expand, and handheld gaming
remains significant, as evidenced by the remarkable success of the
Nintendo Switch, one of the most successful consoles in history[9].
Consequently, the ecological impact of such gaming devices cannot
be overlooked.

The following section introduces the ENGAGE Game Boy, along
with the challenges encountered during the design process and their
respective solutions. The utilization of solar panels and mechanical
switches[1] for power generation and other alternative approaches
employed in similar devices are investigated. Additionally, the in-
corporation of an incorruptible and efficient checkpointing system
named MPatch is being presented and compared to competing solu-
tions. The final sections evaluate the device and discuss the results
derived from the work of Jasper de Winkel et al..

2 BATTERYLESSNESS AND ITS CHALLENGES
2.1 The Nintendo Game Boy Emulator
Jasper de Winkel et al. have designed a Nintendo Game Boy emu-
lator employing modern hardware components. The primary ob-
jective was to deliver an authentic gaming experience, minimizing
compromises wherever possible. This entailed ensuring the emula-
tor’s compatibility with all games featured on the original platform.
In the event of a power failure, the emulator was engineered to
resume the game from the exact point of interruption upon restart-
ing, eliminating the need to start the game anew—a crucial feature
for facilitating uninterrupted gameplay. Maintaining the original
aesthetic was also a priority, requiring the emulator to replicate the
size, buttons, and the overall front and back design of the original
Game Boy with the addition of solar panels.

2.2 Challenges
The absence of a battery and the circumstances surrounding the
device present significant challenges:

• Fluctuating power supply: Without a battery, the system
cannot store excess energy, leading to shutdowns during
phases of low available energy.

• Game independence: Games vary significantly in their
interaction with users and hardware/software of the Game
Boy. To support all games without optimizing for a single
one poses a challenge.

• High system requirements: Games, in general, demand
substantial computation, placing significant strain on the
system.

• Expensive checkpointing: Due to frequent power out-
ages and the need to save the game state, large amounts of



Florian Koch

volatile memory must be transferred to non-volatile mem-
ory multiple times, intensifying stress on the computing
system and increasing energy requirements.

These difficulties should be overcome while ensuring smooth
gameplay.

2.3 Game Boy Workflow

Figure 1: Different phases of the Game Boy depending on the
available energy

Figure 1 illustrates the Game Boy’s operation based on its current
energy levels. The Game Boy is powered by solar panels, resulting
in lower energy production during periods with less sunlight (1) and
significantly higher production during phases with ample sunlight
(4). The Game Boy undergoes a "charging" phase until its energy
capacities are full, at which point the game starts. While play-
ing, additional energy is generated through mechanical switches
activated by button presses (2). Subsequently, during videos with
no input demand, no energy is produced in this manner (5). The
game stops as the device approaches power failure. Only during
low-power phases, checkpoints are generated. Therefore, energy
continues to be consumed even after the game has stopped (3). In in-
stances where energy depletes before a checkpoint is completed (6),
there is a potential risk of encountering "corrupted" checkpoints.

The subsequent sections delve into the underlying concepts of
the Game Boy and explore the strategies employed to achieve a
properly functioning device.

3 ENERGY PRODUCTION AND
CONSUMPTION

3.1 Energy Self-Supply
In the realm of generating our own green energy on the go, it is
crucial to have a reliable energy source or diversify across multiple
sources that complement each other. This ensures the ability to play
under various circumstances. We have three forms of energy—light,
heat, and motion—that can be transformed into electricity in differ-
ent ways.

For light, simple solar panels can be utilized to generate a
portion of the energy, similar to their use in calculators today.

In terms of heat, thermoelectric generators (TEGs) have been
successfully employed for energy self-sufficient portable devices,

such as in powering watches [10]. TEGs leverage the Seebeck Ef-
fect, where two different metals or semiconductors connected in a
closed circuit create a voltage potential when there is a temperature
gradient across them. Electrons in the hotter region gain energy
and move towards the cooler region. Nguyen Van Toan et al. have
applied this principle to use the temperature difference between the
human body and the surrounding ambient temperature to power a
watch, a concept that could be easily adapted for the Game Boy.

Using motion as a proven method of energy supply suitable
for the gaming console, piezoelectric generators[6] emerge as
a viable option. These generators employ piezoelectric materials
that deform under mechanical stress, leading to the separation of
positive and negative charges. The resulting electric potential across
the material is then collected as an output voltage. In the context
of the Game Boy, vibrations created through button pressing or
shaking the device could be harnessed to generate power.

Mechanical switches and solar panels are the sole energy
supply of Engage, making the device highly dependent on access to
light and games that involve frequent button pressing. Specifically,
the front of the Game Boy is covered with generic solar panels,
and off-the-shelf mechanical switches[1] are used for the A and B
buttons as well as the D-Pad. These switches operate by moving a
magnetic block from top to bottom upon pressing, with the abrupt
reversion of polarity transformingmechanical energy into electrical
energy. Upon release, the block returns to its original position. To
maximize power generation, a button can only be held for up to
300ms before needing to be pressed again to signal an input to the
game, slightly altering the gameplay for certain games.

Regardless of the energy source, minimizing power consumption
is a top priority for increasing the device’s uptime.

3.2 Reducing the Needed Energy
To minimize energy consumption, modern hardware components
have been carefully chosen for the Game Boy. An Ambiq Apollo3
Blue ARM Cortex-M4 MCU, an ultra-low-power microcontroller
featuring Flash and SRAM, is being deployed. Additionally, an ex-
ternal Fujitsu MB85RS4MT 512 KB FRAM is incorporated for fast,
low-power, non-volatile memory essential for storing checkpoints.
The Japan Display LPM013M126A LCD is selected for its easy avail-
ability and, once again, its low power consumption.

Compromises have been made in the area of sound, as it is
not a feature of the Game Boy emulator. This limitation is partly
attributed to the challenges associated with creating an enjoyable
sound design for an intermittent device.

As previously mentioned, constant checkpointing poses a signif-
icant challenge in terms of power consumption. Memory must be
moved frequently, and some level of overhead is inevitable. Optimiz-
ing this process represents an intriguing research topic that could
potentially yield promising results in enhancing energy efficiency.

4 MEMORY MANAGEMENTWITH
CHECKPOINTS

4.1 Categories of Checkpointing Systems
All checkpointing systems can be divided into two categories:



Seminar Paper: Battery-Free Game Boy

• Corruptible checkpointing: The current state of the
MCU is transferred to a predetermined location on non-
volatile memory, overwriting the old checkpoint. This pro-
cess may lead to a corrupted checkpoint if the current one
is not completed, while parts of it have already overwritten
the previous one. Ensuring that sufficient energy is present
for a new checkpoint to be completed with 100% certainty
is unrealistic, as predicting the energy needed for a check-
point in a complex system like a battery-free Game Boy is
practically impossible.

• Incorruptible checkpointing: These checkpointing sys-
tems operate by not directly overwriting a previous check-
point, ensuring that there is always a 100% functional check-
point available.

For playing a game with an intermittent power source, using an
incorruptible checkpointing system is crucial; otherwise, the Game
Boy would frequently generate broken checkpoints, and the game
would have to start over. Now that we know an incorruptible check-
pointing system is necessary, the question remains as to which one
is best suited for our use case.

4.2 The Problem with Power-Efficient
Incorruptibility

An approach to achieve incorruptible checkpoints involves using
two buffers—one for the current checkpoint and one for the previous
one. The alternation between which buffer is overwritten after
every successful checkpoint ensures that if a checkpoint fails, the
older one can be used to restore the game state. However, this
solutionmay not be optimal in terms of energy efficiency, as an older
checkpoint might partially contain the same information as the
current one, resulting in overhead as already available information
is saved again.

Saad Ahmed et al. explored a differential checkpointing tech-
nique for intermittent systems[2] that tracks modifications in mem-
ory and only saves the altered memory, significantly reducing over-
head and power consumption. This approach is particularly promis-
ing when only a few parts of the memory are frequently changing.
Jasper de Winkel et al. tested this for gaming by tracking memory
changes in four different Game Boy games. The result showed that
significant portions of the memory were changing rarely, making
differential checkpointing well-suited for the Game Boy.

The system developed by Saad Ahmed et al., called DICE[3], is a
corruptible one, meaning it needs transformation. However, sim-
ply applying differential checkpointing to a double buffer doesn’t
work because with differential checkpointing, a checkpoint always
requires information about the preceding checkpoint, creating a
dependency between the two buffers. This issue could then only be
resolved by introducing data duplicates again.

4.3 MPatch
To address this challenge, Jasper de Winkel et al. developed the
first incorruptible, differential checkpointing system called MPatch.
The name is derived from the term "patches," which represent con-
secutive segments of volatile memory, specifically the modified
memory between checkpoints, saved onto non-volatile memory.
These patches are linked through a linked list, where each patch

refers to the next younger patch. Each patch is assigned the number
of the checkpoint it corresponds to. After successfully creating a
checkpoint, an atomic variable n is incremented, indicating that all
patches with a number less than n can be utilized for game state
restoration in the event of a power failure.

In detail, when a power failure occurs and the system needs to
restore its state upon restarting, the linked list is traversed from
the newest patch to the oldest patch. The contents of patches with
a number equal to n pertain to an incomplete checkpoint and are
disregarded, and the checkpoint itself is promptly deleted.

Figure 2: Game memory directly before and after restoration

Figure 2 illustrates how the saved memory from the remaining
patches is utilized to reconstruct the checkpoint. For each patch,
only the segments of the saved memory that have not been already
applied in a newer patch are used, ensuring that older information
does not overwrite newer data. An interval tree is employed for
this purpose, recording the memory range that has already been
altered. Consequently, for checkpoint 2, the entire memory can
be copied to the Game memory. For checkpoint 1, however, parts
of the memory are outdated (indicated in yellow) as checkpoint 2
contained newer data at the same location in the memory. Conse-
quently, this patch is only partly applied. The restoration process
concludes after traversing the entire list, and the game can resume.

This approach has the dual advantage of being both non-corruptible
and differential. While there are no duplicates of data, some patches
may contain unnecessary memory that will never be applied—an
inevitable outcome. Importantly, there is no memory overhead at
the moment a patch is created, ensuring that the Game Boy is not
burdened with unnecessary computational load and energy drain
during gameplay, thereby enhancing the gaming experience.

4.4 The Memory of ENGAGE
The emulated gamememory utilizes the recently introducedMPatch
system. The remaining emulationmanagement logic is checkpointed
using a straightforward double buffering method. Unlike the origi-
nal Game Boy, the screen has its own buffer that is also checkpointed
to facilitate the restoration of its specific state.

The following section presents the performance of the device
during actual testing by first examining the uptime of the device
and then comparing MPatch to an alternative.



Florian Koch

5 EVALUATION
5.1 Power Outages Throughout Testing
As demonstrated in the preceding chapters, the device’s perfor-
mance is highly contingent on the game being played and the
availability of light. Consequently, four different games were tested:
Tetris, Space Invader, Super Mario Land, and Bomberman.

In terms of average button presses per second, Bomberman ex-
hibited the lowest value at 1.3 presses per second, while Space
Invaders had the highest at 2.7 button presses per second. This
is only an average and can vary significantly depending on the
player or the current game situation, for instance, cutscenes tem-
porarily reduce button presses to almost zero. One button press
per second generates 0.66mJ. Rounding the test results for different
games yields 0.66mW in the worst-case scenario and 1.97mW in
the best-case scenario. Jasper de Winkel et al. assessed performance
under two different lighting conditions, with strengths of 40/20
kilolux. The first scenario yielded an average of 10.14mW, while
the latter produced 8.33mW.

Figure 3: worst, average and best case energy production vs
consumption

Figure 3 illustrates the power production under these conditions
in comparison to power consumption. ENGAGE, on average, con-
sumes 11.5mW, representing a substantial improvement compared
to the original Game Boy, which consumes 232.08mW during game
execution. However, in the worst-case scenario (1 button press
per second + 20lkx -> 9mW) and non-ideal situations, ENGAGE
consumes more energy than it generates, leading to an inevitable
power outage. Even in the best-case scenario (3 button presses per
second + 40klx -> 12.11mW), there are phases of lower button press
rates and reduced energy generation through the solar panels, re-
sulting in occasional energy depletion. The average-case scenario,
calculated based on the total power of the best- and worst-case
scenarios, also yields less power (10.55mW) than ENGAGE con-
sumes. Tetris, with an average of two buttons pressed per second,
has a gaming uptime of approximately 10 seconds with 40klx or
3.5 seconds with 20klx, underscoring the relevance of a good light
source.

5.2 MPacth vs Non-Differential Double
Buffering

Other tests conducted compared MPATCH in terms of the time it
took to create and to restore a checkpoint against a naive check-
pointing approach similar to MEMENTOS[8], which is based on

non-differential double buffering. In these tests, MPATCH demon-
strated superiority in both aspects, significantly reducing the time
required for checkpoint generation and slightly decreasing the
time needed for checkpoint restoration. As a result, MPATCH ap-
pears to successfully fulfill its purpose of reducing overhead and,
consequently, lowering the power consumption associated with
checkpointing.

6 DISCUSSION
Improvements in terms of power consumption and checkpointing
efficiency have undoubtedly been achieved. However, in any testing
scenario, the gaming experience remains unsatisfying. Furthermore,
testing under actual absence of light was not conducted, but the
results would have been predictably poor, given that ENGAGE
relies almost entirely on solar panels. With the additional use of
other energy sources, such as deploying a TEG, more favorable
results could certainly have been attained. Even then, it’s essential
to acknowledge that the built device is an 8-bit Game Boy, with
modern gaming consoles having significantly higher energy de-
mands. It is important to note, though, that Jasper de Winkel et
al. never claimed to have developed a device for practical applica-
tion in the real world. Instead, their aim was to demonstrate the
possibility of enabling battery-free intermittent gaming, a goal
they certainly achieved. Particularly, the developed MPatch system
is a genuinely interesting and promising concept that has been
successfully validated through testing.

However, the necessity for gaming consoles to be battery-free is
questionable. Convenience is a weak argument, especially consid-
ering how rapidly modern devices can charge and the widespread
accessibility of electrical sockets. A console that consistently shuts
down cannot be considered convenient either, which is the biggest
challenge when designing a battery-free console. An important
area of research focuses on making batteries more environmen-
tally friendly[4, 11]. This may be a more relevant emphasis for
video game consoles, considering the ecological impact, as there
are no other compelling reasons to entirely abandon batteries in
this context.

The situation is different for ultra-low-power devices or devices
where relying on a battery would introduce significant inconve-
nience, such as medical body implants, for which abstaining from
batteries is likely to be the future[12], as changing the battery in
such devices involves a substantial effort.

7 CONCLUSION
All in all, it can be concluded that the developed Game Boy does
indeed function, although the current version is only suitable for
demonstration purposes in a laboratory environment, but future
advancements in energy efficiency and energy harvesting will facili-
tate the construction of handheld battery-free devices. Nevertheless,
practicality remains a distant prospect, given that modern gaming
devices demand significantly more energy than an 8-bit Game Boy.
ENGAGE has taken an initial step towards deeply interactive inter-
mittent systems, paving the way for further research. Particularly,
the newly designed checkpointing system appears interesting and
promising.



Seminar Paper: Battery-Free Game Boy

REFERENCES
[1] ZF Friedrichshafen AG. Energy harvesting generator. 2015.
[2] Saad Ahmed, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, Naveed Anwar

Bhatti, and Luca Mottola. Poster abstract: Towards smaller checkpoints for better
intermittent computing. Proc. IPSN (Nov. 11-13). ACM/IEEE, Porto, Portugal, 2018.

[3] Saad Ahmed, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, Naveed Anwar
Bhatti, and Luca Mottola. Efficient intermittent computing with differential
checkpointing. page 70–81, 2019.

[4] Simon Dühne, Johannes Betz, Martin Kolek, Richard Schmuch, Martin Winter,
and Tobias Placke. Toward green battery cells: Perspective on materials and
technologies. Small Methods, 4(7):2000039, 2020.

[5] Ravi Jain and John Wullert. Challenges: Environmental design for pervasive
computing systems. page 263–270, 2002.

[6] Alireza Khaligh, Peng Zeng, and Cong Zheng. Kinetic energy harvesting using
piezoelectric and electromagnetic technologies—state of the art. IEEE Transac-
tions on Industrial Electronics, 57(3):850–860, 2010.

[7] Wojciech Mrozik, Mohammad Ali Rajaeifar, Oliver Heidrich, and Paul Chris-
tensen. Environmental impacts, pollution sources and pathways of spent lithium-
ion batteries. Energy Environmental Science, 14(12):6099–6121, 2021.

[8] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support for
long-running computation on rfid-scale devices. SIGARCH Comput. Archit. News,
46(3):159–170, 2011.

[9] Jordan Sirani. The best-selling video game consoles of all time. 2023. Last
Accessed: 19.12.2023.

[10] Nguyen Van Toan, Truong Thi Kim Tuoi, Nguyen Van Hieu, and Takahito
Ono. Thermoelectric generator with a high integration density for portable
and wearable self-powered electronic devices. Energy Conversion and Manage-
ment, 245:114571, 2021.

[11] Hui Wang, Peitao Zheng, Huan Yi, Yinyan Wang, Zhuohong Yang, Zhiwen Lei,
Yukun Chen, Yonghong Deng, Chaoyang Wang, and Yu Yang. Low-cost and
environmentally friendly biopolymer binders for li–s batteries. Macromolecules,
53(19):8539–8547, 2020.

[12] Jungang Zhang, Rupam Das, Nosrat Mirzai Jinwei Zhao, John Mercer, and Hadi
Heidari. Battery-free and wireless technologies for cardiovascular implantable
medical devices. Advanced Materials Technologies, 7(6):2101086, 2022.


	Abstract
	1 Introduction
	2 Batterylessness and its challenges
	2.1 The Nintendo Game Boy Emulator
	2.2 Challenges
	2.3 Game Boy Workflow

	3 Energy production and consumption
	3.1 Energy Self-Supply
	3.2 Reducing the Needed Energy

	4 Memory management with checkpoints
	4.1 Categories of Checkpointing Systems
	4.2 The Problem with Power-Efficient Incorruptibility
	4.3 MPatch
	4.4 The Memory of ENGAGE

	5 Evaluation
	5.1 Power Outages Throughout Testing
	5.2 MPacth vs Non-Differential Double Buffering

	6 Discussion
	7 Conclusion
	References

