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ABSTRACT
Bluetooth technology has become ubiquitous in modern devices,

with Bluetooth-Low-Energy (BLE) standing out for it’s efficiency.

A recent breakthrough in research by de Winkel et al. [1] present

an architecture for battery-free intermittently-powered wireless

communication systems, able to handle power-failures without

compromising the BLE specifications. This seminar paper provides

a fundamental understanding of this protocol and presents the

methodology used by de Winkel et al. in their case study called

FreeBie. It examines and compares their approach with previous

efforts to achieve similar goals in intermittently-powered environ-

ments.

1 INTRODUCTION
In the realm of wireless communication systems, Bluetooth Low

Energy (BLE) stands as a pivotal technology, revolutionizing connec-

tivity in, among others, Internet of Things devices. Its significance

stems from its low power consumption, widespread support [2]

and capacity for secure bi-directional communication.

The conventional reliance on batteries in such Bluetooth sys-

tems presents challenges in terms of maintenance, environmental

impact and the inevitable issue of aging and disposal. Additional

issues arise, regarding weight- or size-optimized BLE nodes, where

batteries are frequent limiting factors. Addressing these concerns,

the shift towards intermittently-powered systems employing ca-

pacitors instead of batteries emerges as a viable solution. They

provide a lot of extended functionality but also come with unique

challenges of their own. Previous solutions struggled with the mul-

tifaceted demands of intermittent wireless communication systems,

a complex and largely unsolved challenge. The work by de Winkel

et al. [1] marks a transformative breakthrough, offering solutions

that exceed prior limitations.

Firstly, they present a novel architecture, introducing a reimag-

ined checkpointing system tailored specifically for intermittent

wireless systems. This innovation serves as the core contribution,

mitigating the challenges posed by intermittent power and en-

abling seamless functionality even in energy-constrained environ-

ments. Moreover, their implementation and case study, FreeBie
[open-source code: 3], enables BLE to operate intermittently and bi-

directionally. Notably, it sustains established BLE connections even

after multiple power failures, paving the way for new battery-free

IoT devices and applications.

To enable continuous communication however, BLE is an inher-

ently real-time dependent protocol with little margin for missed

deadlines and schedules[, as described in Section 2.1]. In conse-

quence, the key challenge is outlined as follows: To adapt such a

protocol to intermittently-powered environments, by checkpointing

and restoring (naturally) volatile connections and system state effi-

ciently in the presence of power failures. Additionally taking into

account required system characteristics like data and environmental
consistency, concurrency and energy efficiency, following a particular
control flow.

To provide insight into the work done by de Winkel et al., this

seminar paper first highlights BLE specifications and complexity,

then succeedingly presents and discusses their adapted architecture.

2 BACKGROUND AND PREVIOUS WORK
2.1 BLE Functionality
Bluetooth Low Energy (Bluetooth LE, BLE) was introduced in the

Bluetooth 4.0 core specification [4] in 2010 and has since received

major improvements in succeeding Bluetooth versions [5, Vol 1,

Part C]. It differs from Bluetooth Classic in almost every way: It uses

a different protocol stack, i.e. architecture, and different hardware

which enables it to be used in ultra-low-power applications, e.g.

in IoT devices [6]. As a result, it offers considerably lower power

consumption than Classic Bluetooth and is able to operate on very

small energy sources like coin-cell batteries at the cost of through-

put [2, 7]. It is simply meant for more bursty and lower bandwith

data transfers, as most commonly needed in embedded systems,

like IoT sensors, relying on the principle to turn on the radio for

as short and as rarely as possible to receive and transmit data. The

transmission range can be individually configured by application

developers to range from only a few meters to over 1 kilometer

by using methods for data recovery like Forward Error Correction

(FEC) and trade-offs to bandwidth [6].

In consequence, Bluetooth Classic and Bluetooth Low Energy

are not compatible with each other, as they make different demands

to their respective host or end devices. But luckily, most modern

consumer devices support both Classic and Low Energy variants,

making for a very broad range of usability and compatibility [6, 2].

BLE operates on the Industrial Scientific Medical (ISM) band,

in the 2.4 GHz frequency spectrum. As usual, multiple Bluetooth

devices can work in parallel at the same time, so it is important to

distinguish between them. That is done by subdividing the spec-

trum into 40 unique Radio Frequency (RF) channels with a 2 MHz

spacing. Data is transmitted via electromagnetic waves within these

channels, by using the Gaussian Frequency Shift Keying (GFSK)

modulation method [2]. Essentially, an interpretation, i.e. a key like

"0" and "1", is assigned to two distinct frequencies in each channel.

By shifting the frequency of the carrier signal according to this key-
ing, binary data can be transmitted and received between devices.

Three BLE RF channels are used by end devices to advertise their

presence as a connectable device, giving them the name advertising



Marvin März

channels, and by host devices to scan for new connections. Data

is sent over the remaining 37 data channels which are used for

bi-directional communication. To avoid collision, interference and

noise in the spectrum, as it is also shared between other wireless

devices and protocols like WLAN, BLE uses an adaptive frequecy

hopping algorithm. The host provides the end device with a specific

map of data channels to be used for each connection time-slot, i.e.

connection event, and the peripheral follows suit.

Figure 1: BLE Pairing Flowchart [see 8, Figure 1]

Transmissions can be done either in broadcast style or connection-

based, which de Winkel et al. focused on since it had not been done

properly before. Connections in BLE are established in multiple

phases, during which the roles of both devices change. As described

above, end devices announce their presence on the three adver-

tising channels. If a host, the initiator, wants to connect to the

device, it sends a Pairing Request to the advertiser, who may send a

Pairing Response. Both messages contain information about each

devices features and capabilities, as detailed in [8]. Before estab-

lishing a connection and transmitting data over the data channels,

both devices get to generate an encryption key [9] which is used to

securely identify packages [2] and encrypt the connection. On the

encrypted link, host and end devices can share their security keys

and so establish a secure data transfer, as seen in Figure 1. During

this connection establishment period, different connection parame-

ters that dictate various timings, can be negotiated. de Winkel et al.

used this to their advantage in adapting their implementation to

severely constrained intermittently-powered systems, as described

in Section 3.3,

2.2 Motivation And Previous Work
Of course, other ventures in the field of intermittency and wireless

communication have been made, but as de Winkel et al. noted,

most of them were "infeasable" for the task. This is made clearly

in the research overview that Figure 2 provides. The main chal-

lenge they happened upon, was that already existing restoration

and checkpointing methods were not feasible for wireless commu-

nication. Those methods would disturb the protocol’s meticulous

timing, which in turn would not enable sustained connections. And

so there existed no way of recovering a communication after a
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Figure 2: Overview of intermittent BLE implementations
[see 1, Table 1]. The more "desired" wireless communication
protocol features those systems address, the higher they rank
in this score.

power-failure of the intermittently-powered end device. The fol-

lowing reconnection would require many packets to be sent. In

the case of FreeBie, the intermittent solution by de Winkel et al.,

each reconnection required about 70 packets, taking around 40s at

the lowest energy supply levels. Other methods like duty-cycling

or transmission power control were also recognized as hindering,

because of energy consumption problems or only marginal energy

savings with too high of an overhead. In already energy-constrained

intermittent systems, this huge overhead only drains energy faster,

while other applications or network tasks must wait. This results

in worse performance and a shorter operating span of the wire-

less device, neither of which are desirable traits. de Winkel et al.

recognized that already proposed methods for checkpointing and

restoring the system state are not feasible for wireless network-

ing systems, because they would break the protocol’s timing and

real-time requirements.

3 FREEBIE: INTERMITTENT ADAPTATION
AND IMPLEMENTATION

de Winkel et al. identified two types of frameworks that would be

best suited for storing and resuming system operation in terms of

memory. Task-based frameworks use tasks and variables to create

a state-machine. The problem was that there existed no automated

way to implement this efficiently, meaning it would have needed to

be done by hand on a codebase comprised of around 400 000 lines

of code.

A different approach to tasks is a checkpointing-framework

where a function is introduced to the original protocol stack that

saves the system state until the function (i.e. the checkpoint) is

called. A big problem shared by both task-based and checkpoint-

based approaches is that they inevitably disrupt the protocols tim-

ing because of time-consuming store and restore operations. To
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FRAM non-volatile, slower

SRAM volatile, faster

Restore Processes Save Checkpoints

Figure 3: Memory structure [1, Figure 4], process checkpoint-
ing and restoration. Checkpoints are double-buffered in non-
volatile memory.

nonetheless enable unobstructed communicationwithin intermittently-

powered end-devices, de Winkel et al. proposed three major frame-

work changes that mitigate previously encountered problems and

shortcomings, which will be addressed in the following Sections.

The main components of the intermittently-powered BLE node,

from now on called FreeBie, are its nRF52840 BLE ARM-based mi-

crocontroller unit (MCU) [10], the MB85RS4MT fast non-volatile

Ferroelectric Random Access Memory (FRAM) [11], and the low-

power and high resolution AM1815 Real-Time Clock (RTC) [12].

To power the system, energy is generated by two EXL2-1V50 solar

panels [13], harvested by the BQ25570 energy harvester [14] and

stored in two parallel 7.5 mF capacitors [15]. A Google Pixel 3a

[16] is chosen as the battery-based Android BLE host, dictating

some technical specifications and energy requirements of the Free-

Bie node. The Packetcraft [17] BLE stack which implements all

standard Bluetooth layers, was picked as the base of the FreeBie

implementation.

3.1 Time-Deterministic Checkpoint (TDC) and
Real-time Restoration

The system was adapted to an intermittently powered environment

by using Time-Deterministic Checkpoints (TDC) to save the system

state in non-volatile memory from which it can be restored follow-

ing a power failure. In essence, the checkpoint that saves the whole

system state can be triggered by the termination of wireless proto-

col processes. This results in a relatively minimal implementation

effort, because no code instrumentation, fixed checkpoint timers

or voltage monitors are needed to determine the checkpointing

time. Processes and their respective memory need to be separated

into three groups: (i) network, (ii) OS, (iii) application. For memory

structure, the Packetcraft source code was split by the developers

into code directories each representing one process, so that the

linker can allocate static memory in different areas during compila-

tion, according to the memory map presented in Figure 3. Processes

are also either classified as non-real-time or real-time and restored

as such by the scheduler. OS and network processes are, due to their

nature, always marked as requiring real-time operation and restora-

tion, whereas application processes can be either non-real-time or

real-time.

The scheduler schedules the process checkpoints and restoration,

and is responsible for deciding whether to place the system into

sleep mode or turn off the processor power domain completely,

using the virtualisation layer (see Section 3.2). The function Pal-
SysSleep() is usually repeatedly called to set the system in sleep

mode, awaiting the next process. That function was extended to

allow the system to checkpoint and turn off the power to the proces-

sor power domain. The checkpointing procedure executed before a

power-off is as follows: (1) determine the next power-on time by the

virtualisation layer and (2) the real-time processes that then need

to be restored, (3) checkpoint the latest process configuration and

lastly (4) checkpoint the OS. In the OS checkpoint, processor regis-

ters, stack, heap, scheduler and many other important components

of the system are saved. Thus application and network process

checkpoints must always be committed with an OS checkpoint

in order to ensure memory integrity. Each checkpoint is double-

buffered in non-volatile FRAM (see Figure 3) to protect the system

against faulty states at recovery. Lastly the processor power domain

is shut down.

Checkpoint sizes and thus restoration times can vary, mainly due

to different sizes of the OS checkpoint, in which all utilized portions

of the stack and heap are also committed. So to keep the timing

deterministic, a margin is added on top of the varying restoration

times and the normalized restoration constant is given as 𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒
with a value of 10 ms.

The OS scheduler function wsfOsDispatcher() was altered in

a major way, precisely to distinguish between non-real-time and

real-time processes. Non-real-time processes are restored dynami-

cally prior to their execution by the scheduler, whereas real-time

processes are always restored at system boot in advance to the

scheduler resuming operation. Under the condition that a check-

point is present, the system restores OS and network checkpoints,

as well as those real-time application processes determined prior

to power-off. After synchronising to the external time source and

compensating for the power-off time, the device resumes normal

operation. That means it goes to sleep mode and then executes

application or networking processes as dictated by the scheduler. If

no checkpoint is available (i.e. during the first boot of the device),

the system synchronises to the external time source, the external

RTC, and starts operation.

3.2 Virtualisation Layer
To resume operation at a predetermined time, the system is split into

two distinguished power domains: (i) processor power domain and

(ii) "always-on" ultra-low-power domain to which the external RTC

belongs. So when the next process event is scheduled to start later

than 𝑇𝑚𝑖𝑛𝑂𝑓 𝑓 , most of the power-consuming system components

can be turned off completely, saving a lot of energy. 𝑇𝑚𝑖𝑛𝑂𝑓 𝑓 was

determined to be in a break even point between the additional

energy cost of checkpointing operations and its obvious energy

savings, at a value of 20 ms.

Protocol timing and peripheral state would be disrupted by

standard intermittent operation. So to support time-deterministic
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restoration as outlined in Section 3.1, de Winkel et al. proposed

an abstraction layer that masks the time and peripherals of the

intermittent end-device to the host. This is done by employing an

external low-power Real Time Clock (RTC) which is always kept

on, separately from the processor power domain, and can wake up

the system at a predetermined alarm time 𝑇𝑤𝑎𝑘𝑒𝑈𝑝 . It is calculated

as follows: 𝑇𝑤𝑎𝑘𝑒𝑈𝑝 = 𝑇𝑠𝑦𝑛𝑐 −𝑇𝑠𝑡𝑎𝑟𝑡𝑈𝑝 −𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒 , where 𝑇𝑠𝑦𝑛𝑐 de-

notes the known time of the next synchronisation with the external

RTC and 𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒 = 10 ms (see Section 3.1. The start up duration

𝑇𝑠𝑡𝑎𝑟𝑡𝑈𝑝 was experimentally found to be a constant value of 10 ms.

With those times known, the alarm of the external RTC (belonging

to the always-on domain of the system) is set to 𝑇𝑤𝑎𝑘𝑒𝑈𝑝 and the

processor power domain can safely power down, because the RTC

can control the processor power domain via an external power

switch and wake the system up.

Syncing the MCU’s RTC with the external RTC is necessary

because at power-off, all data from the internal RTC registers is

lost. Since 𝑇𝑠𝑦𝑛𝑐 is known and saved during checkpointing, it can

be used as a compensation value to mask the effects of intermittent

operation. Therefore all reads by applications to the internal RTC

registers through the virtualisation API will get the compensated

and corrected time instead of the raw value.

3.3 Dynamic Network Handling (DNH)
Dynamic Network Handling is necessary for two areas of the sys-

tem: (i) network recovery and (ii) dynamic network adaptation.

Network recovery is needed after a unforseen power failure or

when the system was not able to turn back on at a predetermined

time. If the Supervision Timeout (ST), the connection timeout pa-

rameter set to its maximum of 32s, allows it, missed connection

events are then skipped and the network process is scheduled for

the next connection event. Lost packages during the power failure

will be attempted to be retransmitted by the network stack.

Dynamic network adaptation is responsible for improving the

energy-efficiency and performance of the device. It monitors the

amount of available energy in the capacitors and tries to adapt, i.e.

re-negotiate, the connection parameters, namely Connection Inter-

val (CI) and Slave Latency (SL) accordingly. Connection Interval is

denoted as time between the start of two consecutive connection

events, in the FreeBie node a value between 1s and 4s. Whereas

Slave Latency is an integer number between 0 and 3, defining the

amount of connection events which the end device is allowed to

ignore [2]. When the system experiences high amounts of energy,

CI and SL are requested to be reduced, effectively increasing respon-

siveness, throughput and overall performance. Complementary, in

the case of low energy, the system tries to increase both parameters

in order to preserve energy. This comes at the cost of throughput

but it enables the device to operate for longer by allowing it to

stay in sleep or power-off mode for extended periods of time (de-

termined by the scheduler and virtualisation layer as explained in

previous sections 3.1, 3.2).

3.4 FreeBie Evaluation
de Winkel et al. evaluated their FreeBie node with two applications

and use-cases: First, they developed a fully functional battery-free

smart-watch which was powered by the FreeBie node. Secondly,

they also developed a firmware updating application, a first in

intermittent wireless communication. To simulate energy levels,

especially during a 24 hour benchmark, they first collected sample

luminosity values from a sensor outside. The BLE node was then

sealed in a light controlled box, where the only light source was

a controllable LED light on the ceiling, as a means of imitating

sun and weather conditions. de Winkel et al. then continued to

evaluate their system’s performance under various light intensities

and long-time simulations, probing different parts of their archi-

tecture. For example, they examined the node’s ability to retain a

connection, after the main capacitors were empty, i.e. simulating a

power-failure. They found that the node did indeed not lose the es-

tablished connection, if it was powered on again within the ST time

window. In comparison to another reference BLE Stack, SoftDevice,

their system was up to 9.5 times more energy efficient in idle due

to its ability to switch the processor power domain off completely,

opposite to the other device which just went into sleep mode.

4 DISCUSSION
As FreeBie evaluation results show, the new intermittently-powered

BLE node managed to retain already established connections for

extended periods of time, even after multiple power failures. A

lot of its longevity features can be attributed to its capability of

re-negotiating connection parameters which are more suitable to

the current energy state of the device. This, in combination with

the time-deterministic checkpointing system and masking of its

time and peripherals to the host device, allowed it to have better

energy consumption and connection metrics in comparison to the

unmodified Packetcraft [17] BLE stack, on which it is based.

However, de Winkel et al. also identified some areas where fu-

ture improvement to their architecture would be possible to further

optimise the energy consumption, cost and size of their BLE node:

Using a MCU with on-board FRAM (or MRAM) storage and inte-
grated RTC, should significantly reduce external memory access

and synchronisation overhead. They were able to support this claim,

by looking at data where this overhead was removed and could ver-

ify that energy consumption was significantly lower [1, Figure 12].

They identified the Ambiq Apollo4 Blue [18] to potentially provide

these features, but sadly, this product was then yet upcoming. It

has since been, at the time of this paper, released meaning further

improvements and iterations to this architecture could be imagined.

5 CONCLUSION
In conclusion, this paper has provided an introduction to Bluetooth

Low Energy (BLE) functionality, highlighting challenges in previous

intermittent implementations. The unveiling of a fully functional,

intermittently-powered BLE node, sets a precedent by shifting from

connection-less beacon broadcasts to active connections. This new

architecture not only overcomes power failure interruptions but

also effectively preserves and restores connections and system state.

The evaluation of this case study underscores its significant contri-

bution to wireless intermittent communication, laying a foundation

for future innovation.
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