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ABSTRACT
Intermittent systems can be found in anything from payment cards
to home-automation devices. Debugging embedded systems has
already proven to be a difficult task, which only gets harder when
considering the unreliable and fast-changing energy environments
that characterize intermittent systems. Implementing a debugger
that can not only handle common operations, such as setting break-
points or memory manipulation, but also cope with the unique
energy requirements requires novel techniques and research. Well-
integrated intermittent system debuggers accelerate the develop-
ment cycle and are invaluable in the creation of error-resilient de-
vices. This paper outlines and discusses approaches and challenges
that need to be considered when designing and implementing an
intermittent system debugger.
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1 INTRODUCTION
The past few years have seen a steady increase in the number of
embedded systems [15]. They can be found in an ever-growing
number of devices, ranging from simple consumer electronics to
complex industrial appliances. As energy harvesting technologies
are gaining traction, there is a growing interest in reducing the
amount of batteries required to power such devices and even replace
them outright [17].

These developments are partially caused by the severe disad-
vantages of batteries, such as the high environmental impact of
their production and disposal, the limited capacity and the resulting
need for periodic replacement [6, 16]. Thus, there is an increasing
number of battery-less embedded systems, which harvest their en-
ergy from external sources, including solar, thermal, kinetic and
radio [8]. These systems are called intermittent systems, due to their
unique energy characteristics. As they fully rely on external energy
sources, they are subject to frequent power failures leading to inter-
mittent execution of their software. While they are often equipped
with (super-)capacitors to stabilize the power supply, these are only
able to keep the device running for a brief amount of time (i.e. few
seconds).

Existing debugging techniques and tools for embedded systems
are not equipped to handle the unique challenges of intermittent
systems. Typically, these debuggers either assume or provide a con-
tinuous power supply to the device under test (DUT) [19], which
masks all intermittency related issues outright [2, 3]. Trying to
circumvent these issues by keeping the original power supply cir-
cuitry in-place, can cause problems during debugging. Tracing calls,
like printf(. . . ) and assert(. . . ), skew the energy charac-
teristics of the DUT and change the behaviour encountered during
regular execution. Breakpoints pose additional challenges, as they
can halt execution indefinitely while the developer inspects the
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Figure 1: Energy characteristics of intermittent systems. Ex-
ecution begins after reaching the required start-up energy
of the device. While working on computational tasks and in-
teracting with peripheral devices, the energy storage slowly
drains. Upon reaching a set operational threshold, the system
loses its power. Work can only be done in the short intervals
between system start-up and power failure [6].

halted program state, draining the available energy. Finding a solu-
tion to these problems is crucial, as a proper debugging environment
is essential for developing robust and error-resilient software [6].

2 INTERMITTENT SYSTEMS
Intermittent systems are characterized by their lack of batteries
and their dependence on energy harvesting. Harvested energy is
collected to a (super-)capacitor that powers the device upon reach-
ing a voltage threshold and operating until it is depleted again.
Capacitors are only able to store small amounts of energy and ex-
ternal energy sources are often unreliable (e.g. solar panels) leading
to frequent power failures. Depending on the type of device, this
charge-drain-recharge cycle happens many times per second, trig-
gering frequent restarts of the entire program [6]. Figure 1 displays
the energy characteristics typical of intermittent systems. After
harvesting enough energy to reach the system’s start-up energy,
the system will drain the stored energy during its computational
tasks. A power failure occurs when energy levels drop below the
operational threshold.

There has been extensive research on executing programs reli-
ably on intermittent systems without risking data loss or corruption.
Some of these techniques rely on transforming the program into
a state-machine, which only executes tasks that can be completed
inside the currently available energy budget. Others try to save
and restore the volatile state in face of power loss to non-volatile
memory (NVM).

Task-Based Programming aims to split up programs into tasks,
that are guaranteed to execute completely given a certain energy
budget. Tasks can be thought of as atomic units of execution, as
they either complete successfully or their effects and results are
discarded [21]. Each task must only require as much energy as
is available between two power failures, or be split up into sub-
tasks that do. System integrity is ensured, as no task can corrupt
the system’s state. Alpaca [12] is a C extension featuring such a
task-based programming model.
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Checkpointing relies on saving the system’s state to non-
volatile memory at certain points during execution. When power
becomes available after a power failure, the last checkpoint is re-
stored and program execution resumes. Multiple trade-offs have
to be made when deciding on the checkpointing algorithm to use,
such as the frequency of checkpoints or how much state is stored.
For example, delta compression can lead to significant reductions in
the transferred data, but requires additional energy for computing
the changes.Mementos[18] provides energy aware checkpoints that
heuristically decide when to checkpoint at run time.

Non-volatile systems abandon volatile state outright and re-
place all required components with non-volatile alternatives. Non-
volatile random-access memory is already closing the gap to regular
random-access memory and there is research exploring the micro-
architectural changes required to decrease the volatile state used
by processors [10, 11]. Increasing the amount of state kept in non-
volatile memory lowers the impact of intermittency significantly.
If everything is stored in persistent mediums, power failures are a
non-issue making such intermittent systems behave like continu-
ous ones — albeit execution halting indefinitely until the system has
harvested enough energy. As the only change required to support
debuggers for these kinds of systems is working towards lowering
the attachment latency, they will not be mentioned in the following
sections.

Restoring program state is not enough for many embedded de-
vices, which often rely on connected hardware and sensors. These
input and output (IO) devices are often stateful themselves (such as a
display showing a certain image) and might need to be reinitialized
following a power loss.

As the energy dependence of intermittent systems plays a major
role in the development process, it is important to be able to gain
insights of the system’s energy usage and storage over time. Energy
traces are generated by measuring the power circuitry of connected
devices and the DUT [7]. Analyzing and replaying these traces can
prove very valuable in the reproduction of intermittency related
failures.

3 DEBUGGING INTERMITTENT SYSTEMS
Intermittent Systems, with their unique set of behaviours and char-
acteristics, require capable debugging tools that allow developers
to fully control and monitor the DUT. The following section will
outline errors only encountered during non-continuous execution,
describe the challenges associated with debugging such systems
and pose a list of requirements a fully-featured intermittent system
debugger should fulfill.

3.1 Errors in Intermittent Systems
As the running program can be interrupted at any time due to
sudden power loss, it is essential to employ the services of a state
management framework as described in section 2. These frame-
works must be able to mitigate the issues described in the following
to ensure error-free execution.

3.1.1 Volatile State Restoration. Checkpoint-based software relies
on restoring the previously saved state to continue execution. De-
pending on the complexity of the mechanism, this includes every-
thing from processor registers (e.g. program counter, stack pointer,
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Figure 2: Simplified view on the state found in an intermit-
tent system. If the state restoration algorithm is erroneous
it can corrupt the memory. In this example, the processor’s
program counter and parts of the system memory were re-
stored correctly, but left the remaining memory in an invalid
shape. [5]

general purpose registers, . . . ) to the entire volatile random-access-
memory (RAM) of the chip [18]. Intricate checkpointing frame-
works can contain programming errors themselves, as their ad-
vanced design must be fully resilient to power failures. Many issues
stem from the large amounts of data to be saved to non-volatile
memory before depleting the stored energy. Atomicity guarantees
must be in place to prevent unfinished checkpoints from being
written to persistent storage [5]. Otherwise, a combination of a
previous program counter and new register contents will stop the
program from resuming correctly [14]. Figure 2 depicts such a par-
tial state restoration, where the processor’s state was successfully
saved and restored from NVM, but the system’s memory did not get
stored completely. Thus, the program will continue from the same
location with corrupted memory, leading to undefined behaviour.

Common counter measures, such as multiple buffering, can still
be susceptible to these issues. They need to ensure that updating the
flag indicating which buffer to use happens without interruptions,
otherwise the problem will persist in other forms.

3.1.2 Periphery State Management. Many embedded systems de-
pend upon external devices to function, like temperature sensors,
displays or real-time clocks (RTC). The state of these peripheral
devices must be considered as well, especially if they are powered
separately from the main circuit or hold persistent state internally.
Sensors often need to be initialized or calibrated before they can be
used properly, which needs to be accounted for while designing the
persistency framework — be it task- or checkpoint based [13, 21].

Figure 3 showcases an intermittency problem due to missing
periphery state restoration. After a power failure occurs in line
5, the checkpointing system will restore the intermittent systems
volatile state as described in subsection 3.1.1. This includes the pre-
viously read data sent in line 6. However, the next time the while
loop’s condition is evaluated in line 3, SensorRead(. . . ) will try
to read from an uninitialized and uncalibrated sensor. Depending
on the hard- and software implementation, this can lead to the func-
tion call blocking indefinitely or the transmission of invalid data.
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1 s en so r = I n i t i a l i z e S e n s o r ( ) ;
2 C a l i b r a t e ( s en so r ) ;
3 while ( d a t a = Read ( s en so r ) ) {
4 Checkpoint ( ) ;
5 / / < Power f a i l u r e o c c u r s >
6 Transmi t ( d a t a ) ;
7 }

Figure 3: Code snippet showcasing a read-transmit loop, com-
monly found in sensor-based intermittent devices. When a
power failure occurs in line 5, the checkpointing framework
will restore the systems memory. However, the sensor is
not re-initialized and re-calibrated, leading to undefined be-
haviour upon reaching line 3.

Restoring from power loss only works properly, when considering
the interactions between the system and its attached peripheral
devices. Loading the state of one without the other will inevitably
lead to issues, as their progress diverges [3].

3.2 Challenges in Debugging Intermittent
Systems

Common debugging approaches for embedded devices, like toggling
a light-emitting diode when reaching certain lines of code, are not
applicable due to intermittent systems’ high energy sensitivity.
While the usage of oscilloscopes can provide a deep look into the
DUT’s energy behaviour and its attached devices, the prohibitive
costs and inability to relate energy consumption to the running
code make them unsuitable for most applications [2]. Inserting
tracing calls like printf or assertions to verify that the program is
executing correctly does not only alter the energy characteristics
of the device, but may also need to allocate non-volatile memory
to save the results. As there is only limited NVM available, this
technique can only be used after careful consideration. It may be
tempting to directly stream tracing output to connected devices, but
as these IO devices need to be powered and clocked themselves this
can further skew program behaviour as this consumes additional
energy.

Software breakpoints are typically implemented as regular func-
tion calls, which might impact checkpointing algorithms. Often
times, these algorithms try to heuristically determine where to put
checkpoints by analyzing control flow and data dependencies [18].
Function calls pose a good target, leading to different state restora-
tion behaviour when software breakpoints are used. Figure 4 show-
cases how volatile state can get saved pre-maturely when implicit
checkpoints are inserted by software breakpoints. In the example,
a for loop repeats N times and stores the newly computed total to
non-volatile memory. As the counter variable i resides in volatile
memory, it does not survive a power loss. Depending on N and the
speed of the deployed sensor, the loop could take a long time to
complete. Thus, there is a high probability of a power failure occur-
ring during iteration. If i is not restored, the loop will be executed
N times again instead of the remaining N - i iterations, which
skews the total value. As DBG_Breakpoint() causes a checkpoint

Snippet (a)

1 Checkpoint ( ) ;
2 t o t a l = NVM_Load ( ) ;
3 f o r i < N {
4

5

6 t o t a l += Sense ( ) ;
7 NVM_Store ( t o t a l ) ;
8 }
9 / / i g e t s saved
10 Checkpoint ( ) ;

Snippet (b)

1 Checkpoint ( ) ;
2 t o t a l = NVM_Load ( ) ;
3 f o r i < N {
4 / / i g e t s saved
5 DBG_Breakpoint ( ) ;
6 t o t a l += Sense ( ) ;
7 NVM_Store ( t o t a l ) ;
8 }
9

10 Checkpoint ( ) ;

Figure 4: Code listing showing how software breakpoints can
hide erroneous checkpoint placement. As the loop’s counter
i resides in volatile memory, it is only stored to NVM upon
reaching a checkpoint. This leads to the loop starting all over
again, when a power failure occurs before the last check-
point. DBG_Breakpoint() introduces an implicit checkpoint,
as function calls are used as a heuristic to determine check-
point placement. Here, this leads to i being saved to NVM,
eliminating the issue found in the original code.

to be generated inside the loop, i will be saved when running in
debug mode — masking the original error.

Intermittent Systems debuggers must not only implement stan-
dard debugging procedures that integrate with the aforementioned
state management, but also be able to control the power supply of
the DUT. Only the ability to provide the DUT with any kind of en-
ergy input, be it continuously powered or replaying a pre-recorded
energy trace, enables full reproduction of previously encountered
issues [3]. Ekho is a stand-alone energy emulator capable of record-
ing and replaying detailed energy harvesting traces. Mocking the
device’s power supply is handled by an energy emulator, hooking
into the DUTs circuitry. Minimizing interference is of utmost im-
portance, as not to change the behaviour of the intermittent system.

System emulators can help in debugging embedded devices, as
they are able to execute the given software directly on the host
machine, increasing the development speed significantly. How-
ever, even with fine-grained instruction level emulation, it is dif-
ficult to replicate the timing behaviour of real chips accurately.
As intermittent systems can fail between two clock cycles, the
micro-architecture of the chip must be implemented precisely. Ad-
ditionally, the energy impact of each instruction must be simulated
to track energy usage during execution. SIREN [4] is an intermit-
tent system emulator, which relies on real-world energy traces
recorded by Ekho. Many emulators focus solely on CPU emulation
and simply disregard or completely mock external devices, mak-
ing them unsuitable for debugging complex circuits. Even when
instructions are timed clock-accurately and peripheral devices are
fully emulated, every produced chip has subtle variations in its
power consumption and startup behaviour. Thus, emulators can
support the development process but not replace inspecting the
real hardware directly [3].
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3.3 Required Features
Tight integration of the debugger and the energy emulator enable
energy-neutrality during debugging. As developers want to debug
the device in its whole while considering the behaviour caused by
intermittent execution, an intermittent system debugger should
implement certain features to accommodate these requirements:

• Energy emulation allows the developer to replay recorded
energy traces or supply synthetic power to the DUT. Fur-
thermore, monitoring of the system’s power consumption
is required to closely observe the impact of running code
on the given energy budget.

• Energy-neutral debuggingminimizes the impact of break-
points and tracing calls. Single-stepping can only work
when energy neutrality is given, as otherwise there may
simply not be enough energy stored to support time expen-
sive debugging. Energy-guards enable the exclusion of code
from energy emulation, thus masking the impact on the
device’s stored power [2].

These features must not significantly introduce computational
overhead or change the program’s behaviour, as to provide a realis-
tic execution environment.

4 IMPLEMENTATIONS OF INTERMITTENT
SYSTEMS DEBUGGERS

An intermittent system debugger must satisfy these requirements
while minimizing the impact on the DUT. Multiple approaches on
how to design a debugger for intermittent systems will be discussed.

4.1 Energy Management
Simulating the device’s energy can either be performed by replacing
the original power supply outright or by hooking into the original
circuit. If the power supply is fully replaced by the energy emulator,
it can provide the systemwith virtually any type of energy input [3].
Real-world testing can be done by replaying a pre-recorded energy
trace containing the measured capacitor voltage and the net power
consumption of the device. Full energy control also allows to simu-
late any kind of capacitor and energy harvesting device, massively
simplifying the part selection process. Stress- and limit-testing can
be performed by providing configurable synthetic signals, e.g. con-
figurable sawtooth and square waves, to the DUT. Partial energy
management leaves the DUTs power supply in place and hooks
to the existing power lines [2]. Keeping energy interference to a
minimum is essential to enable a realistic test environment. Fig-
ure 5 showcases how full energy management takes over the entire
power supply of the device, allowing for the capabilities mentioned
above.

Energy emulation can either be performed passively, where the
system powers itself using energy harvesting, or actively with the
debugger providing the system with power [2, 3]. Active mode is
helpful in early development stages, as it enables the developer
to fully manipulate the energy input characteristics of the DUT.
However, it is possible to closely mimic an energy environment
with passive mode that closely matches the one targeted for final
deployment. Measurements acquired during passive mode can also
provide deep insights into the system’s behaviour and be used to

MicrocontrollerEnergy Emulator

Microcontroller

Energy Emulator

Power Supply

Full Energy Management

Partial Energy Management

Figure 5: Energy management strategies typically employed
in intermittent systems debugging. Replacing the power sup-
ply entirely allows the attached energy emulator to fully con-
trol the energy input of the device. A less invasive method is
to hook into the existing power lines of the DUT and manip-
ulate the existing energy levels.

determine statistics, such as average power usage and the amount
of energy harvested during regular operation.

4.2 Debugger Design
Many considerations and trade-offs need to be made when creating
an intermittent system debugger. This section aims to shed some
light on the advantages and disadvantages of choosing to support
one capability or design over another.

4.2.1 Software-Based Debuggers. Debugging features, like setting
break- or watchpoints, can be implemented using a software library.
This requires the application developer to set breakpoints or de-
clare energy-guarded sections in the existing code. When the MCU
encounters such a call during execution, the debugger springs into
action and handles the request [2].

As discussed in section 3.2, software-based debuggers can mask
existing errors in the code. Every additional line of code inserted
for debugging can cause the compiler to optimize differently [3].
Function calls to different modules, i.e. the debugger’s software
library, completely prevents function inlining in languages like C.
Loop unrolling also gets more difficult the more code resides in
a loop body. Even though programs are often compiled without
optimizations during debugging, it does not help towards the final
stages of the development cycle where programs are run in release
mode.

Software-based debugging abstracts away the underlying hard-
ware, which allows it to be used when developing for chips with-
out integrated debugging hardware. However, this comes at the
cost of having to recompile the entire program when modifying
breakpoints or assertions, slowing down the development cycle.
Additionally, hardware debuggers can be prohibitively expensive
making software debuggers attractive for individuals.

4.2.2 Hardware-Based Debuggers. Many microcontrollers (MCU)
have integrated debugging circuitry, which can be accessed by hard-
ware debuggers attached to the MCU. Common debugging features,
like breakpoints or memory manipulation, are performed by the
MCU itself. While this alleviates the need to instrument the running
code to make use of the debugger, e.g. inserting DBG_Breakpoint()
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calls, it is not without issues. As intermittent systems suffer power
failures, all volatile MCU state is lost — including essential debug-
ging information. If it is not restored fast enough, the program will
resume execution disregarding previously set breakpoints. Most
MCUs cannot alter their own debug registers due to security con-
cerns, worsening the issue. Even when the debugger keeps track of
all necessary state and tries to restore it as fast as possible, break-
points occurring at the start of execution might still be missed [3].
Thus, hardware debuggers need to minimize the time required for
(re-)connection to alleviate these problems. Fully preventing this
issue is only possible by requiring the debugger to be fully attached
at program start, i.e. calling DBG_Attach() before anything else,
increasing start-up latency. Furthermore, the on-chip debugging
support requires energy, which needs to be accounted for in the
energy emulator.

4.2.3 Development Interface. Interactions with debuggers should
be as smooth as possible to enable rapid development cycles. Build-
ing and expanding upon existing debuggers like GDB, easens the
migration process and offers integration with existing tools and
plugins. As software debuggers provide a completely new library in-
terface, it is more difficult to incorporate them to existing software
and developer teams. Apart from offering an interface for coding-
related debugging tasks, there also needs to be a well-designed way
to communicate with the energy emulator. Graphical user inter-
faces are incredibly useful for visualizing and manipulating energy
traces and monitoring the device’s energy level over time.

4.3 Energy-Neutral Debugging
One of the major challenges encountered while fixing issues in
intermittent systems, is the increased power consumption caused
by debugging code that traces the control flow or performs con-
straint checks on large data structures. Even worse, conventional
embedded system debuggers are not resilient to power failures of
the tested device and further strain the limited energy budget when
handling breakpoint invocations or slowly single-stepping through
code. Thus, a debugger designed for intermittent system has to
offer energy-neutrality during those moments.

4.3.1 Breakpoints. As the control flow of intermittent systems is
not only dependent on conventional conditions found in program
code, the current energy level also plays a significant role in the
behaviour of the system. Apart from code breakpoints that activate
when reaching a certain line of code, energy breakpoints trigger
when the amount of stored energy is lower or equal than a set
value [2]. Combining these already useful primitives enables com-
bined breakpoints, which test the energy level at a line of code. These
combined breakpoints can reveal unexpected energy loss caused by
unforeseen code paths and trigger exactly at the right time when
the device’s energy deviates from the expected amount. Tight in-
tegration with the energy management unit, allows the debugger
to record and restore the energy level encountered when pausing
execution at a breakpoint. From the perspective of the developer,
this allows to debug the device like an ordinary embedded system,
while the debugger powers the DUT in the background [2, 3].

4.3.2 Energy-Guards. During development, it might be helpful to
include constraint checking for important data structures across the
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Figure 6: Energy-guards bridge the time between regular
programexecution and debugging tasks. Green sectionsmark
the energy emulator springing into action and supplying the
DUT with power, hiding the effects of debugging.

entire program. This can catch issues introduced by faulty memory
restoration, as shown in section 3.1.1, and common coding errors
alike. However, iterating through all elements of a container, such
as lists or trees, and verifying that pointers are set correctly, or that
certain checksums hold up is computationally and energetically
expensive [2]. In intermittent systems this leads to the depletion of
stored energy before reaching the erroneous parts of code, prevent-
ing extensive constraint checks outright.

Intermittent system debuggers provide energy-guards. These
energy-guards enable intervals of code to run with no impact on
the device’s energy storage, by employing a similar energy restora-
tion mechanism to breakpoints [2, 3]. Code inside a guarded section
does not affect the energy level of the system, allowing not only for
expensive constraint checks, but also the verification and report-
ing of data produced by external devices. Even ad hoc debugging
mechanisms, like toggling LEDs when certain conditions are met,
can be used inside an energy-guard. This behaviour can be ob-
served in figure 6, where the green sections indicate guarded code.
Similar energy traces are the result of other debugging actions,
such as breakpoints and manual single-stepping. Only the tight
integration of an energy emulator and a debugger enables the full
functionalities required to properly debug intermittent systems.

Energy-guards allow the integration of intermittency-unaware
library code into the rest of the program, as uninterrupted execu-
tion is guaranteed. Developers migrating embedded device code
to intermittent systems get the ability to start with a fully energy-
guarded program and slowly increase the power failure resiliency
by shrinking the guarded section and rewriting the affected code.

DBG_printf() and DBG_assert() functions further improve the
developer experience by providing energy-neutrality for common
debugging tools. Failing an asserted condition behaves similarly
to entering an energy-guarded section or a breakpoint, until the
programmer resumes execution [3].

4.4 Automated Testing
Provided the aforementioned features and capabilities, it can be
feasible to perform automated testing of intermittent systems. De-
buggers can either extend existing debuggers, like GDB, or offer
a scriptable interface to allow other software to interact with the
DUT. When parameterized with the functions used for checkpoint-
ing and the affected memory ranges, it is possible to verify that
the memory was not corrupted during state restoration. While this
already offers a significantly improved debugging experience for
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EDB DIPS

Debugger Design Software Hardware
Energy Management Partial Full
GDB-Based No Yes
Energy-neutral Debugging Yes Yes
Breakpoints Software Software & Hardware
Automated Testing No Yes
Single Stepping No Yes
Supported Architectures MSP430 ARM

Table 1: Design and capability comparison of EDB [2] and
DIPS [3].

testing a single device, it can also be used during the development
of new checkpointing frameworks. Similar instrumentation can be
performed for task-based frameworks, where energy breakpoints
can be set inside running tasks to ensure that sufficient energy is
available to finish the current task [3]. If this invariant does not
hold true, the atomicity guarantees of the framework were violated
and need to be checked. Hardware debuggers can observe the full
memory range available, which additionally allows to verify that
peripheral devices’ state was successfully restored.

5 EXISTING DEBUGGERS
The rising popularity of intermittent systems has lead to the first
generation of energy-aware debuggers.

To the best of my knowledge, the energy-interference-free debug-
ger (EDB) [2] was the first publicly available debugger that was
designed from the ground up for intermittent systems. It features a
software-based debugger with partial energy management capabil-
ities, allowing to measure and manipulate the energy levels of the
DUT on the fly. The newly introduced concept of energy-neutral
debugging, showed its worth as multiple bugs were found in ex-
isting code using EDB. Minimizing back-feeding from EDB to the
tested device needs to be considered, as EDB hooks into the existing
power rails of the device. Cumulating the current generated by EDB
across all attached devices and communication lanes, yields a total
worst-case current flow below 1𝜇𝐴. Even though intermittent sys-
tems are known for their low power usage, this is still a negligible
amount. Additionally, there are little changes when comparing the
energy level at the start of an energy-guard and after resuming
execution. The mean difference of stored energy is around 4 − 5%,
being suitable for most use-cases [2].

DIPS [3], the debugger for intermittently-powered systems, follows
in EDB’s footsteps and expands upon its features. As a hardware-
based debugger, it is not affected by the issues regarding masked
errors described in section 3.2 and missed optimizations as dis-
cussed in section 4.2.1. DIPS accomplishes this by utilizing the
MCU’s debugging circuitry instead of relying on a software-library
for common debugging tasks. Furthermore, it enables automatic
testing of the DUT, which proved itself to be a major factor in
the development of error-resilient systems. While support for the
MSP430 architecture, which can be found in many intermittent sys-
tems due to its support for non-volatile FRAM [9], is still pending
DIPS has already proven useful as shown in numerous case studies.

DIPS’s energy emulator can replay energy traces to an accuracy of
one millisecond and sample the device’s voltage and current level
at a frequency of 50𝑘𝐻𝑧. As hardware debuggers need to reconnect
quickly to the MCU’s inbuilt hardware, it is important to offer low
attachment latencies. DIPS takes less than 100𝑚𝑠 to reconnect on
most devices, with the initial connection delay staying under 400𝑚𝑠

across all devices. If breakpoints could occur during these 100𝑚𝑠 ,
one can instrument the tested program to call DBG_Attach() on
start-up, which will ensure that the debugging environment is fully
setup before running user code [3].

6 RELATEDWORK AND FURTHER
RESEARCH

Foundational work on testing continuously powered embedded
systems was summarized in [1]. Mementos [18] introduced check-
point based state handling, bridging the gap between software
written for battery powered and intermittent systems. Alpaca [12]
foregoes the potential issues caused by checkpointing and uses
energy-aware task scheduling to prevent inconsistencies across
power loss. As non-volatile memory performance approaches that
of conventional memory [20], the idea of running the entire sys-
tem from NVM and thereby minimizing volatile state is gaining
traction. While replacing conventional random-access memory is
already possible, micro-architectural changes are required to enable
intermittency-safe processors. [10] and [11] shed some light on how
such intermittent systems could be implemented. Future work can
leverage the findings presented by EDB [2] and DIPS [3] to improve
the debugging landscape. As the technical foundations are already
available, the focus can shift to the incorporation of additional
hardware architectures and improving the energy emulation.

7 CONCLUSION
As intermittent systems gain popularity, the need for feature-rich
debuggers grows larger. Only tight integration between an ad-
vanced energy emulator and complex debuggers can fulfill the
unique requirements posed by intermittent systems. Automated
testing builds upon the functionalities provided by debuggers and
allows the integration of existing fuzzing frameworks, which have
proven useful many times. Error-resiliency needs to be one of the
foundational priorities when designing and building intermittent
systems, especially when used in health or security-related con-
texts. EDB and DIPS showcase how energy-aware debuggers can
significantly improve the development process and are essential in
reducing issues caused by the special energy characteristics of such
systems. Future work can expand upon these ideas, which allows
intermittent systems to be used in even more places and fields as
they are already established in.
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