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Embedded Devices and Operating Systems

Embedded Devices:

= small
m usecase-specific

m limited resources
Operating Systems:

m FreeRTOS
m Zephyr



Are multi-purpose 0Ss the best solution for embedded
devices?
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Related OS Concepts




Operating Systems Concepts

m Real Time Operating Systems (RTOS)
= aimed at time-sensitive operations
Unikernels
= lightweight
= designed to run a single application

Exokernels
= application-level ressource management
= reduced OS abstraction
= application-specific customization
Library Operating Systems
= customization with selected libraries
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= building blocks build
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Templates

m generic definition of modules

Concepts

m define constraints on types

Functors

m encapsulate building blocks



Scheduler
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Example: FIFO Scheduler

é:heduling Policig / Event Handlers \

( A
[ FIFO Queue ] Task Creation [ Task Termination ]
Task Blocked [ Task Unblocked ]
\ J
e N\
Task Yielded

\_ DA ’ J

using Policy = PolicyWithEnqueueExtensions<FIFO, Counter>;

class CustomFIFOScheduler : public SchedulerAssembler<Policy,
TaskCreation::Cooperative: :KeepRunningCurrent<Task>,
TaskTermination::Common: :RunNext<Task>,
TaskBlocked: :Common: :RunNext<Task>,
TaskUnblocked: :Cooperative: :KeepRunningCurrent<Task>,
TaskYielded: :Common: :RunNext<Task>> {}




Execution Models

Event-Driven

single/few thread(s)

can be expressed as state-machine
events define control flow

example: automatic shades

Thread-Based
m number of threads
m typically short-lived
m concurrent task handling

m example: gateways
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Task Control Block

m contain information about a task

m required for every task

m can be built from building blocks

m constraints (stack, system calls, ID, priority, state)

m initializer & finalizer

1



Evaluation




Gateway

N

Monitor Actuator

N N

rA A
= = Monitor

m Actuator

m Gateway

measure water

12



Monitor

Gateway
N
(il
Monitor L Actuator
D M .
— (il Monitor
L — L

m event-driven
® measures soil moisture

measure water

m informs Actuator

13



Actuator

Gateway
N
r
Monitor L
ﬁ Actuator
e m event-driven
m starts/stops watering
messtie] sior B communicates with

Gateway

14



Gateway

Gateway
N
(il
Monitor L
N

- L3
L - (N Gateway
m thread-based
e i m translates CoAP to HTTP

15



Memory Footprint
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Flash Footprint
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Performance

0.6 |-

RTT in ms

0.2 -

Median Mean

0o Tinkertoy [0 FreerTOS 10 Zephyr

18



Conclusion




Conclusion

few lines of code — usecase-specific 0S

significantly smaller memory footprint

no performance impact

no networking support

no synchronization primitives
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Questions?
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