Operating System Support for Embedded
Devices

February 7, 2024

Jonas Wozar

Friedrich-Alexander-Universitat Erlangen-Nirnberg

Embedded Devices and Operating Systems

Embedded Devices:

= small
m usecase-specific

m limited resources
Operating Systems:

m FreeRTOS
m Zephyr

Are multi-purpose 0Ss the best solution for embedded
devices?

Table of Contents

Related OS Concepts
Tinkertoy

Evaluation

Conclusion

Related OS Concepts

Operating Systems Concepts

m Real Time Operating Systems (RTOS)
= aimed at time-sensitive operations
Unikernels
= lightweight
= designed to run a single application

Exokernels
= application-level ressource management
= reduced OS abstraction
= application-specific customization
Library Operating Systems
= customization with selected libraries

Tinkertoy

Overview

Assembled
| Kernel |

Tinkertoy

-»application-specific 0S

Overview

Assembled
Kernel

,,,,,,,,,,,,,,,,,,,,, : Tinkertoy

] Modules m set of modules

-»application-specific 0S

Overview

Assembled

Kernel
,,,,,,,,,,,,,,,,,,,,, : Tinkertoy
[Module |][] Modules ® set of modules
N I) = components build
77 modules
i[component I][]Components i

-»application-specific 0S

Overview

Kernel
[Module |][] Modules
i [Component I] [] Components

Assembled

/| Building
] Block |

Building
Blocks

Tinkertoy
m set of modules

m components build
modules

= building blocks build
components

-application-specific 0S

10 modules

m Constraints
Scheduler
Memory Allocator

System Call

Dispatcher

Kernel Service Routines

Execution Models
Task Control Block

Context Switcher

Execution State

10 modules

m Constraints
Scheduler
Memory Allocator

System Call

Dispatcher

Kernel Service Routines

Execution Models
Task Control Block

Context Switcher

Execution State

Templates

m generic definition of modules

Concepts

m define constraints on types

Functors

m encapsulate building blocks

Scheduler

Scheduler

e

N

/
\\

\

Policies Constraints Event Handlers
Prioritized Implicitly . .
[FIFO Queue single Queue} Schedulable Prioritizable E’lm&r Interrupt| | Task Creatlun}

Prioritized

Multi Queue

Components
L

Prioritizable
By Mutable
Priority

Task
Termination

Prioritizable
By Auto
Mutable
Priority

Quantizable

AR N

Prioritizable
By Priority

Task Blccked]

Task
Unblocked

Task Welded}

Task Self
Priority
Changed

NS

Task Priority

Changed

Task Quantum

Used Up

syo01g Buipiing

Example: FIFO Scheduler

é:heduling Policig / Event Handlers \

(A
[FIFO Queue] Task Creation [Task Termination]
Task Blocked [Task Unblocked]
\ J
e N\
Task Yielded

_ DA ’ J

using Policy = PolicyWithEnqueueExtensions<FIFO, Counter>;

class CustomFIFOScheduler : public SchedulerAssembler<Policy,
TaskCreation::Cooperative: :KeepRunningCurrent<Task>,
TaskTermination::Common: :RunNext<Task>,
TaskBlocked: :Common: :RunNext<Task>,
TaskUnblocked: :Cooperative: :KeepRunningCurrent<Task>,
TaskYielded: :Common: :RunNext<Task>> {}

Execution Models

Event-Driven

single/few thread(s)

can be expressed as state-machine
events define control flow

example: automatic shades

Thread-Based
m number of threads
m typically short-lived
m concurrent task handling

m example: gateways

10

Task Control Block

m contain information about a task

m required for every task

m can be built from building blocks

m constraints (stack, system calls, ID, priority, state)

m initializer & finalizer

1

Evaluation

Gateway

N

Monitor Actuator

N N

rA A
= = Monitor

m Actuator

m Gateway

measure water

12

Monitor

Gateway
N
(il
Monitor L Actuator
D M .
— (il Monitor
L — L

m event-driven
® measures soil moisture

measure water

m informs Actuator

13

Actuator

Gateway
N
r
Monitor L
ﬁ Actuator
e m event-driven
m starts/stops watering
messtie] sior B communicates with

Gateway

14

Gateway

Gateway
N
(il
Monitor L
N

- L3
L - (N Gateway
m thread-based
e i m translates CoAP to HTTP

15

Memory Footprint

e _
m - _
a 0.8
= M
> 0.6
—
£
o 04|
=

0.2}

oLl I
Monitor Actuator Gateway
Kernel

0o Tinkertoyﬂ 0 FreeRTOS [0 Zephyr

16

Flash Footprint

12

10 -
o | _
D 8
=
< 6
%]
G
L L |-

| H H

(o]

Monitor Actuator Gateway
Kernel

[0 Tinkertoy 0 FreerTOS [0 Zephyr

17

Performance

0.6 |-

RTT in ms

0.2 -

Median Mean

0o Tinkertoy [0 FreerTOS 10 Zephyr

18

Conclusion

Conclusion

few lines of code — usecase-specific 0S

significantly smaller memory footprint

no performance impact

no networking support

no synchronization primitives

19

Questions?

	Related OS Concepts
	Tinkertoy
	Evaluation
	Conclusion

