
Automatic Energy-Hotspot Detection and
Elimination in Real-Time Deeply Embedded
Systems

17.01.2023

Andreas Gräfensteiner

Friedrich-Alexander-Universität Erlangen-Nürnberg

1



Content

Motivation

Energy-Hotspots

Different Types of Energy Hotspot

Improvements for Energy Hotspots

Conclusion

2



Motivation



Motivation

Up until now:

Dynamic Voltage and Frequency Scaling or
ultra-low-power
While useful also quite complicated

3



Motivation

Up until now:

Dynamic Voltage and Frequency Scaling or
ultra-low-power
While useful also quite complicated

Now: Instead of changing hardware => Optimizing software
code

Structure code in the most energy efficient way
Finding Energy Hotspots and remove them

=> All just through changing the order of the commands

4



Energy-Hotspots



Energy-Hotspots

Specific areas within deeply embedded systems
Higher energy consumption compared to the overall
energy usage patterns of the system
Identification based on distinctive inefficiencies
Categorization into three types:

Tail, Sleep and Active

5



Why to avoid them

Enhanced Performance
Extended Battery Life
Improved Reliability
Cost Efficiency
Environmental Impact

6



Different Types of Energy Hotspot



Machine r

7



The code

8



HotspotTail

Focus on energy
inefficiency of a delay
between two
consecutive Use()
statements after the
execution of the first

9



HotspotSleep

Inefficient transition
between sleep and
active state

=> Significant energy
overhead for Acquire()
and Release()
Can be calculated using
Lower Bound on Sleep
Time (LBST)

LBST =
ERel + EAcq
PowA − PowS

10



HotspotActive

Two different Variants
Energy inefficiency due
to interval between
Aquire()/Use() and
Use()/Release()
The prolonged idleness
or activity leads to
energy wastage

11



Improvements for Energy Hotspots



HotspotTail

use statements should
be moved towards
each other
Can be prevented by
time restriction and
dependencies

12



HotspotSleep

Optimization of the
transition between
active and sleep states
according to LBST
Adjustment of the code
sequences

13



HotspotActive

Bring Acquire closer to
Use() and Use() closer
to Release()

=> Reduces inefficient
resource utilization
Careful this can lead to
a new HotspotSleep

14



Conclusion



Conclusion

Advantages:

Easy to implement and use for small programs
Useable without any hardware modifications
Reduced Energy costs
Could be automated with further research

Disadvantages:

Code needs to be more structured
Increased development time
The MCFG of the code needs to be known
It gets quite complicated for complex programs

15



Conclusion

At the moment usefull for parts or small projects
Could be used by the industry with further research

16


	Motivation
	Energy-Hotspots
	Different Types of Energy Hotspot
	Improvements for Energy Hotspots
	Conclusion

