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Motivation

Up until now:

Dynamic Voltage and Frequency Scaling or
ultra-low-power
While useful also quite complicated
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Motivation

Up until now:

Dynamic Voltage and Frequency Scaling or
ultra-low-power
While useful also quite complicated

Now: Instead of changing hardware => Optimizing software
code

Structure code in the most energy efficient way
Finding Energy Hotspots and remove them

=> All just through changing the order of the commands
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Energy-Hotspots

Specific areas within deeply embedded systems
Higher energy consumption compared to the overall
energy usage patterns of the system
Identification based on distinctive inefficiencies
Categorization into three types:

Tail, Sleep and Active
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Why to avoid them

Enhanced Performance
Extended Battery Life
Improved Reliability
Cost Efficiency
Environmental Impact
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Different Types of Energy Hotspot



Machine r
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The code
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HotspotTail

Focus on energy
inefficiency of a delay
between two
consecutive Use()
statements after the
execution of the first
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HotspotSleep

Inefficient transition
between sleep and
active state

=> Significant energy
overhead for Acquire()
and Release()
Can be calculated using
Lower Bound on Sleep
Time (LBST)

LBST =
ERel + EAcq
PowA − PowS
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HotspotActive

Two different Variants
Energy inefficiency due
to interval between
Aquire()/Use() and
Use()/Release()
The prolonged idleness
or activity leads to
energy wastage
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Improvements for Energy Hotspots



HotspotTail

use statements should
be moved towards
each other
Can be prevented by
time restriction and
dependencies
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HotspotSleep

Optimization of the
transition between
active and sleep states
according to LBST
Adjustment of the code
sequences
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HotspotActive

Bring Acquire closer to
Use() and Use() closer
to Release()

=> Reduces inefficient
resource utilization
Careful this can lead to
a new HotspotSleep
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Conclusion

Advantages:

Easy to implement and use for small programs
Useable without any hardware modifications
Reduced Energy costs
Could be automated with further research

Disadvantages:

Code needs to be more structured
Increased development time
The MCFG of the code needs to be known
It gets quite complicated for complex programs
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Conclusion

At the moment usefull for parts or small projects
Could be used by the industry with further research
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