Automatic Energy-Hotspot Detection and
Elimination in Real-Time Deeply Embedded
Systems

17.01.2023

Andreas Grafensteiner

Friedrich-Alexander-Universitat Erlangen-Nirnberg

Motivation

Energy-Hotspots

Different Types of Energy Hotspot
Improvements for Energy Hotspots

Conclusion

Motivation

Up until now:

m Dynamic Voltage and Frequency Scaling or
ultra-low-power

m While useful also quite complicated

Up until now:

= Dynamic Voltage and Frequency Scaling or
ultra-low-power

m While useful also quite complicated

Now: Instead of changing hardware => Optimizing software
code

m Structure code in the most energy efficient way
m Finding Energy Hotspots and remove them

=> All just through changing the order of the commands

Energy-Hotspots

Energy-Hotspots

Specific areas within deeply embedded systems

Higher energy consumption compared to the overall
energy usage patterns of the system

Identification based on distinctive inefficiencies

Categorization into three types:
= Tail, Sleep and Active

Why to avoid them

Enhanced Performance
Extended Battery Life
Improved Reliability

Cost Efficiency

Environmental Impact

Different Types of Energy Hotspot

Machine r

Aquire(r)

Release

Release(r)

Use(rdata)

The code

A_m
M=o
=

13.

NP, BN =
-

inti=0;
Acquire(r);
Use(r,i);

int j = Rand();
ifj>1){
=1
Use(rj);
else {
Use(rj);
i=1;

Release(r);

Hotspot,;

= Focus on energy eep)
inefficiency of a delay Y
between two
consecutive Use() wm()
statements after the
execution of the first

Use()

m Inefficient transition
between sleep and
active state

=> Significant energy

overhead for Acquire()

and Release()

m Can be calculated using
Lower Bound on Sleep

Time (LBST)

LBST =

ERel + EAcq

Powp — Pows

[Acquire())

™
/

Use()

[Release() |
N J

Time < LBST] [Wo

™
%

k))

[Acquire())

™
/

Use()

(Release())

S 10

H OtSPOtActive

» Two different Variants ‘f\ACq”"EQj (U0
m Energy inefficiency due

to interval between

Aquire()/Use() and (et) Wed)
Use()/Release()

m The prolonged idleness

.. (work)) [Work))

or activity leads to
energy wastage

Use() [/ﬁe\eaSE<)\}

1

Improvements for Energy Hotspots

Hotspot,;

(wory)

m use statements should \
be moved towards e

each other (ooy)

= Can be prevented by T
time restriction and L

dependencies (v)

12

&

(" Acquire() \:j.

X

m Optimization of the
transition between 1U590
active and sleep states
according to LBST (Work(

» Adjustment of the code T
sequences 1“390

[j/ Release() \“'jl

. A

13

H tspotActive

(/ Work() (/ Use()
m Bring Acquire closer to

Use() and Use() closer
to Release() \ ot) (Jee==)

=> Reduces inefficient
resource utilization
[Acquire()) (Work())
m Careful this can lead to :

a new Hotspotsieep
Use)) | " Work()

14

Conclusion

Conclusion

Advantages:

m Easy to implement and use for small programs
m Useable without any hardware modifications
m Reduced Energy costs

m Could be automated with further research
Disadvantages:

m Code needs to be more structured

m Increased development time

m The MCFG of the code needs to be known

m |t gets quite complicated for complex programs

15

Conclusion

m At the moment usefull for parts or small projects

m Could be used by the industry with further research

16

	Motivation
	Energy-Hotspots
	Different Types of Energy Hotspot
	Improvements for Energy Hotspots
	Conclusion

