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Up until now:

= Dynamic Voltage and Frequency Scaling or
ultra-low-power

m While useful also quite complicated

Now: Instead of changing hardware => Optimizing software
code

m Structure code in the most energy efficient way
m Finding Energy Hotspots and remove them

=> All just through changing the order of the commands
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Energy-Hotspots

Specific areas within deeply embedded systems

Higher energy consumption compared to the overall
energy usage patterns of the system

Identification based on distinctive inefficiencies

Categorization into three types:
= Tail, Sleep and Active



Why to avoid them

Enhanced Performance
Extended Battery Life
Improved Reliability

Cost Efficiency

Environmental Impact



Different Types of Energy Hotspot
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The code
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Acquire(r);
Use(r,i);

int j = Rand();
ifj>1){
=1
Use(rj);
else {
Use(rj);
i=1;

Release(r);
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= Focus on energy eep )
inefficiency of a delay Y
between two
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execution of the first

Use()




m Inefficient transition
between sleep and
active state

=> Significant energy

overhead for Acquire()

and Release()

m Can be calculated using
Lower Bound on Sleep

Time (LBST)
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H OtSPOtActive

» Two different Variants ‘f\ACq”"EQj (U0
m Energy inefficiency due
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Improvements for Energy Hotspots




Hotspot,;

(wory )

m use statements should \
be moved towards e

each other ( ooy )

= Can be prevented by T
time restriction and L

dependencies (v )
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H tspotActive

(/ Work() (/ Use()
m Bring Acquire closer to

Use() and Use() closer
to Release() \ ot ) (Jee==)

=> Reduces inefficient
resource utilization
[ Acquire() ) ( Work() )
m Careful this can lead to :

a new Hotspotsieep
Use) ) | " Work()
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Conclusion

Advantages:

m Easy to implement and use for small programs
m Useable without any hardware modifications
m Reduced Energy costs

m Could be automated with further research
Disadvantages:

m Code needs to be more structured

m Increased development time

m The MCFG of the code needs to be known

m |t gets quite complicated for complex programs
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Conclusion

m At the moment usefull for parts or small projects

m Could be used by the industry with further research
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