Benchmarking Crimes

January 17, 2024

Mark Waschkeit

Friedrich-Alexander-Universität Erlangen-Nürnberg

Benchmarking Crimes: Categories

- A. Selective Benchmarking
 - \Rightarrow a single number is not representative of a system
- B. Improper Handling of Benchmark Results
 ⇒ wrongly processing or interpreting benchmarks
- C. Using the Wrong Benchmarks
 not measuring what is intended to be measured
- D. Improper Comparison of Benchmarking Results
 - \Rightarrow results only become relevant when compared
- E. Benchmarking Omissions
 - \Rightarrow necessary measurements for evaluations that are not yet covered
- F. Missing Information
 - \Rightarrow important information has not been specified

- A1: Not evaluating potential performance degradation
 ⇒ benchmark only shows improvements
- A2: Benchmark subsetting without proper justification
 making subbenchmarks and summarizing them to one single number
- A3: Selective data set hiding deficiencies

 only testing a limited range of possible parameter values

B. Improper Handling of Benchmark Results

- B1: Microbenchmarks representing overall performance
 ⇒ only single aspects have been tested, but not the system as a whole (e.g. individual functions)
- B2: Throughput degraded by x% ⇒ overhead is x%
 ⇒ throughput comparisons require comparisons of CPU load
- B3: Creative overhead accounting
 - \Rightarrow e.g. a runtime change from 5s to 20s being depicted as 75% slowdown instead of 300% slowdown
- B4: No indication of significance of data
 - \Rightarrow random variation due to measurement error has to be specified
- B5: Incorrect averaging across benchmark scores
 ⇒ only the geometric mean is capable of properly averaging ratios (√x₁ · ... · x_n)

- C1: Benchmarking of simplified simulated system
 - \Rightarrow emulated systems have different characteristics than real systems
- C2: Inappropriate and misleading benchmarks

 not measuring what is intended to be measured
- C3: Same dataset for calibration and validation
 ⇒ train and test data sets intersecting

- D1: No proper baseline
 - \Rightarrow e.g. changing the baseline for different tests
- D2: Only evaluate against yourself
 ⇒ comparing to the state of the art is way more meaningful
- D3: Unfair benchmarking of competitors
 ⇒ e.g. the competitor's system being tested on its worst
 - settings

E. Benchmarking Omissions

- E1: Not all contributions evaluated
 - \Rightarrow no determination whether self-made claims are met or not
- E2: Only measure runtime overhead
 ⇒ e.g. fails to measure memory overhead
- E3: False positives/negatives not tested
 - ⇒ missing information about the accuracy of the system's decisions (e.g. virus detection)
- E4: Elements of solution not tested incrementally
 ⇒ optional optimizations (do not influence functonality)
 have not been tested individually

F. Missing Information

- F1: Missing platform specification
 - ⇒ missing hardware information (CPU, cache architecture, memory, etc.
- F2: Missing software versions
 - \Rightarrow e.g. operating system, compiler, programs used (and their versions)
- F3: Subbenchmarks not listed
 - \Rightarrow benchmarking suites provide subbenchmark results and should be listed
- F4: Relative numbers only
 - \Rightarrow absolute numbers carry more information

Problems caused by Benchmarking Crimes

Table 1: Benchmarking Crimes' Influence on Completeness(C), Relevancy(R_1), Soundness(S) and Reproducibility(R_2). Bold = high impact [1]

	С	R ₁	S	R ₂
A1: Not evaluating potential performance degradation	0			
A2: Benchmark subsetting without proper justification	0	0		
A3: Selective data set hiding deficiencies	0			
B1: Microbenchmarks representing overall performance		0		
B2: Throughput degraded by x% \Rightarrow overhead is x%			0	
B3: Creative overhead accounting			0	
B4: No indication of significance of data	0			
B5: Incorrect averaging across benchmark scores			0	
C1: Benchmarking of simplified simulated system			0	
C2: Inappropriate and misleading benchmarks		0		
C3: Same dataset for calibration and validation		0		

Problems caused by Benchmarking Crimes

Table 2: Benchmarking Crimes' Influence on Completeness(C), Relevancy(R_1), Soundness(S) and Reproducibility(R_2). Bold = high impact [1]

	С	R_1	S	R ₂
D1: No proper baseline		0		
D2: Only evaluate against yourself		0		
D3: Unfair benchmarking of competitors		0		
E1: Not all contributions evaluated	ο			
E2: Only measure runtime overhead	0			
E3: False positives/negatives not tested	0			
E4: Elements of solution not tested incrementally	0			
F1: Missing platform specification				0
F2: Missing software versions				0
F3: Subbenchmarks not listed	0			
F4: Relative numbers only	0			

Table 3: Benchmarking Crimes' Presence in 2010 and 2015 [1] c/p = crime/paper (c/p pair = element of the cross product of the set of crimes and set of papers)

	2010	2015
c/p pairs with crime(s) c/p pairs being underspecified	27% (69/255) 3% (8/255)	27% (162/596) 3% (15/596)
c/p pairs for E1	38% (6/16)	0% (0/34)

(E1: Not all contributions evaluated, only significant change)

- some suggestions are easy to realize, e.g. with using benchmarking suites ⇒ automation of benchmarks
- all suggestions are necessary to make useful benchmarks (completeness, relevancy, soundness, reproducibility)
- no real improvements in benchmarking over the years
 ⇒ education on proper benchmarking is necessary

[1] Erik van der Kouwe, Dennis Andriesse, Herbert Bos,Cristiano Giuffrida, and Gernot Heiser. Benchmarking crimes:An emerging threat in systems security. 2018.