Battery-Free Game Boy

January 24, 2024

Florian Koch

Friedrich-Alexander-Universität Erlangen-Nürnberg

Problems of batteries in an electronic everyday life:

- ecological expensive raw materials
- energy-intensive production
- difficult recycling
- hazardous materials

Leaving behind batteries where possible

(phones, watches, etc.)

- no ecological disadvantages of batteries
- powered only using green energy (sun, heat, motion)

Jasper de Winkel et al: Battery-free Game Boy

- deeply interactive, intermittent system
- handheld gaming relevant today (Nintendo Switch)
- 8 bit Game Boy one of the most influential consoles to exist (118 million devices sold)

- 1. Concept and Challenges
- 2. Energy Supply
- 3. Memory Management with Checkpoints
- 4. Evaluation
- 5. Discussion

Concept and Challenges

multiple things will pose a Challenge

- constant power outages
- game independence
- high system requirements
- expensive checkpointing

-> Resulting device needs a reliable energy source and high energy efficiency

Energy Supply

motion -> mechanical switches

heat -> Seebeck generator **light** -> solar panels

7

motion -> mechanical switches

heat -> Seebeck generator **light** -> solar panels Other things tweaked to improve the battery independence

- modern, energy-efficient MCU, Memory and Display
- excessive button holding disabled
- no sound outlet

-> non-trivial compromises

Memory Management

- While Playing, the content of the Memory changes a lot
- -> However: some parts change frequently, others barley
- -> Why constantly copy Memory that has not changed?

Power outages can lead to incomplete checkpoints! Corrupted save would mean starting over -> has to be avoided

Buffer type	corruptible	differential	space requirement
diff. single	yes	yes	1x emulated memory
non-diff. double	no	no	2x emulated memory
diff. double	yes	yes	2x emulated memory
MPatch	no	yes	varying

Restoration needs both buffers

Checkpointing

N = 0

13

Checkpointing

N = 1

Checkpointing

N = 1

Checkpointing

N = 2

Checkpointing

Restoring

N = 2

Restoring

N = 2

Restoring

emulated game memory

Restoring

emulated game memory 0x701 0x702 0x703 0x704

0x708

0x709

Restoring

Evaluation

-> power outages happend frequently

Testing MPatch vs. non-differential double buffering MPatch...

- 1. needs less time to create a checkpoint and
- 2. less time to restore a checkpoint

Discussion

- + working Game Boy emulator
- + superior Checkpointing system (at least for this use case)
- + first step towards interactive intermittent systems

- highly dependant on sunlight
- no sound
- little testing of MPatch
- afterall: only a 8-bit Game Boy

Good first step towards interactive intermittent systems with a promising Checkpointing approach

- -> questionable, if future of handheld gaming is battery-free
- -> environmentally friendly batteries maybe promising?

Thank you for your attention!

-> Your questions/ thoughts about the battery-free Game Boy