
Debugging Intermittent Systems
Brief overview of the current debugger landscape

January 24, 2024

Kevin Kollenda

Friedrich-Alexander-Universität Erlangen-Nürnberg

Chair in Distributed Systems
and Operating Systems

Motivation

Kevin Kollenda Debugging Intermittent Systems 1

Not even 60_% of batteries are recycled ---

Batteries need to be replaced/recharged periodically ---

Bad for sustainability and labour costs ---

Table of Contents

1. Intermittent Systems

2. Debugging Challenges

3. Intermittent Systems Debugging

4. Existing Solutions & Further Research

5. Conclusion

Kevin Kollenda Debugging Intermittent Systems 2

Intermittent Systems

Intermittent Systems

Removal of batteries in favor of (super)-capacitors

Harvest energy from external sources (solar, thermal, ...)
Execution is frequently interrupted due to power loss

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 3

Intermittency can mean anything from power loss multiple times per second (cash cards) or a few times per minute

Intermittent Systems

Removal of batteries in favor of (super)-capacitors
Harvest energy from external sources (solar, thermal, ...)

Execution is frequently interrupted due to power loss

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 3

Intermittency can mean anything from power loss multiple times per second (cash cards) or a few times per minute

Intermittent Systems

Removal of batteries in favor of (super)-capacitors
Harvest energy from external sources (solar, thermal, ...)
Execution is frequently interrupted due to power loss

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 3

Intermittency can mean anything from power loss multiple times per second (cash cards) or a few times per minute

Intermittent Systems

Removal of batteries in favor of (super)-capacitors
Harvest energy from external sources (solar, thermal, ...)
Execution is frequently interrupted due to power loss

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 3

Intermittency can mean anything from power loss multiple times per second (cash cards) or a few times per minute

Intermittent Systems

How can we ensure reliable program execution considering
the rapidly changing energy inputs?

Kevin Kollenda Debugging Intermittent Systems 4

Reliable Execution

Checkpointing
Save volatile state to non-volatile memory
Restore from checkpoint after power loss

Task-Based Programming
Program is divided into tasks
Tasks are only run when there is enough energy available

Non-Volatile Systems
Conventional DRAM can be replaced by NVRAM
Non-volatile microarchitectures for processors

Kevin Kollenda Debugging Intermittent Systems 5

Reliable Execution

Checkpointing
Save volatile state to non-volatile memory
Restore from checkpoint after power loss

Task-Based Programming
Program is divided into tasks
Tasks are only run when there is enough energy available

Non-Volatile Systems
Conventional DRAM can be replaced by NVRAM
Non-volatile microarchitectures for processors

Kevin Kollenda Debugging Intermittent Systems 5

Reliable Execution

Checkpointing
Save volatile state to non-volatile memory
Restore from checkpoint after power loss

Task-Based Programming
Program is divided into tasks
Tasks are only run when there is enough energy available

Non-Volatile Systems
Conventional DRAM can be replaced by NVRAM
Non-volatile microarchitectures for processors

Kevin Kollenda Debugging Intermittent Systems 5

Errors in Intermittent Systems

Volatile State Restoration
Volatile System State

Processor State

program counter := 0x42

Memory

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

0x0C 0x0D 0x0E 0x0F

Processor State

program counter := 0x42

Memory

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0xEE

0xF1 0x32 0x45 0xDA

0x27 0xCF 0x01 0x00

power failure

Peripheral State Restoration
1sensor = I n i t i a l i z e Senso r () ;
2Ca l ib ra te (sensor) ;
3while (data = Read (sensor)) {
4Checkpoint () ;
5// <Power failure occurs>
6Transmit (data) ;
7}

Kevin Kollenda Debugging Intermittent Systems 6

Faulty checkpointing leads to partially restore memory ---

Execution continues at same place but with bad memory ---

Periphery state is "external" and needs to be handled separately ---

Example fails at the next time it evaluates the loop's condition ---

Errors in Intermittent Systems

Volatile State Restoration
Volatile System State

Processor State

program counter := 0x42

Memory

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

0x0C 0x0D 0x0E 0x0F

Processor State

program counter := 0x42

Memory

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0xEE

0xF1 0x32 0x45 0xDA

0x27 0xCF 0x01 0x00

power failure

Peripheral State Restoration
1sensor = I n i t i a l i z e Senso r () ;
2Ca l ib ra te (sensor) ;
3while (data = Read (sensor)) {
4Checkpoint () ;
5// <Power failure occurs>
6Transmit (data) ;
7}

Kevin Kollenda Debugging Intermittent Systems 6

Faulty checkpointing leads to partially restore memory ---

Execution continues at same place but with bad memory ---

Periphery state is "external" and needs to be handled separately ---

Example fails at the next time it evaluates the loop's condition ---

Debugging Challenges

Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code
Tracing program flow using printf
Streaming log output to external devices (serial, I²C, ...)
Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers

Kevin Kollenda Debugging Intermittent Systems 7

Some embedded debuggers also power the devices themselves ---

System emulation has its own share of problems, only mention on question ---

Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code

Tracing program flow using printf
Streaming log output to external devices (serial, I²C, ...)
Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers

Kevin Kollenda Debugging Intermittent Systems 7

Some embedded debuggers also power the devices themselves ---

System emulation has its own share of problems, only mention on question ---

Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code
Tracing program flow using printf

Streaming log output to external devices (serial, I²C, ...)
Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers

Kevin Kollenda Debugging Intermittent Systems 7

Some embedded debuggers also power the devices themselves ---

System emulation has its own share of problems, only mention on question ---

Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code
Tracing program flow using printf
Streaming log output to external devices (serial, I²C, ...)

Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers

Kevin Kollenda Debugging Intermittent Systems 7

Some embedded debuggers also power the devices themselves ---

System emulation has its own share of problems, only mention on question ---

Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code
Tracing program flow using printf
Streaming log output to external devices (serial, I²C, ...)
Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers

Kevin Kollenda Debugging Intermittent Systems 7

Some embedded debuggers also power the devices themselves ---

System emulation has its own share of problems, only mention on question ---

Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code
Tracing program flow using printf
Streaming log output to external devices (serial, I²C, ...)
Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers

Kevin Kollenda Debugging Intermittent Systems 7

Some embedded debuggers also power the devices themselves ---

System emulation has its own share of problems, only mention on question ---

Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code
Tracing program flow using printf
Streaming log output to external devices (serial, I²C, ...)
Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers

Kevin Kollenda Debugging Intermittent Systems 7

Some embedded debuggers also power the devices themselves ---

System emulation has its own share of problems, only mention on question ---

Software-Based Debugger Issues

Snippet (a)
1 Checkpoint();
2 t o t a l = NVM_Load () ;
3 fo r i < N {
4

5

6 t o t a l += Sense () ;
7 NVM_Store (t o t a l) ;
8 }
9 // i gets saved
10 Checkpoint();

Snippet (b)
1Checkpoint();
2t o t a l = NVM_Load () ;
3fo r i < N {
4// i gets saved
5DBG_Breakpoint();
6t o t a l += Sense () ;
7NVM_Store (t o t a l) ;
8}
9

10Checkpoint();

Software-based debuggers can alter the program’s behaviour!

Kevin Kollenda Debugging Intermittent Systems 8

Software-Based Debugger Issues

Snippet (a)
1 Checkpoint();
2 t o t a l = NVM_Load () ;
3 fo r i < N {
4

5

6 t o t a l += Sense () ;
7 NVM_Store (t o t a l) ;
8 }
9 // i gets saved
10 Checkpoint();

Snippet (b)
1Checkpoint();
2t o t a l = NVM_Load () ;
3fo r i < N {
4// i gets saved
5DBG_Breakpoint();
6t o t a l += Sense () ;
7NVM_Store (t o t a l) ;
8}
9

10Checkpoint();

Software-based debuggers can alter the program’s behaviour!

Kevin Kollenda Debugging Intermittent Systems 8

Software-Based Debugger Issues

Snippet (a)
1 Checkpoint();
2 t o t a l = NVM_Load () ;
3 fo r i < N {
4

5

6 t o t a l += Sense () ;
7 NVM_Store (t o t a l) ;
8 }
9 // i gets saved
10 Checkpoint();

Snippet (b)
1Checkpoint();
2t o t a l = NVM_Load () ;
3fo r i < N {
4// i gets saved
5DBG_Breakpoint();
6t o t a l += Sense () ;
7NVM_Store (t o t a l) ;
8}
9

10Checkpoint();

Software-based debuggers can alter the program’s behaviour!

Kevin Kollenda Debugging Intermittent Systems 8

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures
Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping

Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures
Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions

Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures
Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures
Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures
Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption

Manual injection of power failures
Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures

Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures
Replay of previously captured energy traces

Kevin Kollenda Debugging Intermittent Systems 9

Intermittent Systems Debugging

Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:

Replaces device’s power supply
Enables energy trace replay
Simulated components

Partial energy emulation:
Hooks into existing circuitry
Closer to real-world conditions

Kevin Kollenda Debugging Intermittent Systems 10

Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:
Replaces device’s power supply

Enables energy trace replay
Simulated components

Partial energy emulation:
Hooks into existing circuitry
Closer to real-world conditions

Kevin Kollenda Debugging Intermittent Systems 10

Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:
Replaces device’s power supply
Enables energy trace replay

Simulated components

Partial energy emulation:
Hooks into existing circuitry
Closer to real-world conditions

Kevin Kollenda Debugging Intermittent Systems 10

Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:
Replaces device’s power supply
Enables energy trace replay
Simulated components

Partial energy emulation:
Hooks into existing circuitry
Closer to real-world conditions

Kevin Kollenda Debugging Intermittent Systems 10

Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:
Replaces device’s power supply
Enables energy trace replay
Simulated components

Partial energy emulation:

Hooks into existing circuitry
Closer to real-world conditions

Kevin Kollenda Debugging Intermittent Systems 10

Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:
Replaces device’s power supply
Enables energy trace replay
Simulated components

Partial energy emulation:
Hooks into existing circuitry

Closer to real-world conditions

Kevin Kollenda Debugging Intermittent Systems 10

Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:
Replaces device’s power supply
Enables energy trace replay
Simulated components

Partial energy emulation:
Hooks into existing circuitry
Closer to real-world conditions

Kevin Kollenda Debugging Intermittent Systems 10

Debugger Design Choice #2

Software-based debuggers:

Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library

Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library
Impact program behaviour

Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:

Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry

Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded

Increased energy consumption
Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Debugger Design Choice #2

Software-based debuggers:
Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface

Kevin Kollenda Debugging Intermittent Systems 11

Energy-Neutrality

Intrusive debugging always consumes additional energy.

How can we achieve realistic conditions during debugging?
Energy-Guards [1]
Neutralize the energy impact of certain actions or code snippets.

In practice:

Energy Guards

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 12

Energy-Neutrality

Intrusive debugging always consumes additional energy.

How can we achieve realistic conditions during debugging?

Energy-Guards [1]
Neutralize the energy impact of certain actions or code snippets.

In practice:

Energy Guards

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 12

Energy-Neutrality

Intrusive debugging always consumes additional energy.

How can we achieve realistic conditions during debugging?
Energy-Guards [1]
Neutralize the energy impact of certain actions or code snippets.

In practice:

Energy Guards

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 12

Energy-Neutrality

Intrusive debugging always consumes additional energy.

How can we achieve realistic conditions during debugging?
Energy-Guards [1]
Neutralize the energy impact of certain actions or code snippets.

In practice:

Energy Guards

Operational Threshold

Time

S
t
o
r
e
d

E
n
e
r
g
y

Startup Energy

Kevin Kollenda Debugging Intermittent Systems 12

Bringing it all together

Energy Emulator Device under Test

Debugger

Energy Harvesting

Sensors

Wireless Modules

Displays

→ Mask energy footprint of complex assertions

→ Pause energy consumption during breakpoints

→ Recreate previously recorded energy environments

⇒ Debug intermittent systems like regular embedded systems

Kevin Kollenda Debugging Intermittent Systems 13

Bringing it all together

Energy Emulator Device under Test

Debugger

Energy Harvesting

Sensors

Wireless Modules

Displays

→ Mask energy footprint of complex assertions

→ Pause energy consumption during breakpoints

→ Recreate previously recorded energy environments

⇒ Debug intermittent systems like regular embedded systems

Kevin Kollenda Debugging Intermittent Systems 13

Bringing it all together

Energy Emulator Device under Test

Debugger

Energy Harvesting

Sensors

Wireless Modules

Displays

→ Mask energy footprint of complex assertions

→ Pause energy consumption during breakpoints

→ Recreate previously recorded energy environments

⇒ Debug intermittent systems like regular embedded systems

Kevin Kollenda Debugging Intermittent Systems 13

Bringing it all together

Energy Emulator Device under Test

Debugger

Energy Harvesting

Sensors

Wireless Modules

Displays

→ Mask energy footprint of complex assertions

→ Pause energy consumption during breakpoints

→ Recreate previously recorded energy environments

⇒ Debug intermittent systems like regular embedded systems

Kevin Kollenda Debugging Intermittent Systems 13

Bringing it all together

Energy Emulator Device under Test

Debugger

Energy Harvesting

Sensors

Wireless Modules

Displays

→ Mask energy footprint of complex assertions

→ Pause energy consumption during breakpoints

→ Recreate previously recorded energy environments

⇒ Debug intermittent systems like regular embedded systems

Kevin Kollenda Debugging Intermittent Systems 13

Existing Solutions & Further
Research

Existing Debuggers EDB

Energy-Interference-Free Debugger (EDB) 2016

Hooks into existing energy circuit
Provides software library for debugging
First available intermittent system debugger

[1]

Kevin Kollenda Debugging Intermittent Systems 14

Existing Debuggers EDB

Energy-Interference-Free Debugger (EDB) 2016

Hooks into existing energy circuit

Provides software library for debugging
First available intermittent system debugger

[1]

Kevin Kollenda Debugging Intermittent Systems 14

Existing Debuggers EDB

Energy-Interference-Free Debugger (EDB) 2016

Hooks into existing energy circuit
Provides software library for debugging

First available intermittent system debugger

[1]

Kevin Kollenda Debugging Intermittent Systems 14

Existing Debuggers EDB

Energy-Interference-Free Debugger (EDB) 2016

Hooks into existing energy circuit
Provides software library for debugging
First available intermittent system debugger

[1]

Kevin Kollenda Debugging Intermittent Systems 14

Existing Debuggers DIPS

Debugger for Intermittently-Powered Systems (DIPS) 2022

Fully manipulates the device’s energy input
Utilizes in-built debugging circuitry
Scriptable interface for automatic testing

[2]

Kevin Kollenda Debugging Intermittent Systems 15

Existing Debuggers DIPS

Debugger for Intermittently-Powered Systems (DIPS) 2022

Fully manipulates the device’s energy input

Utilizes in-built debugging circuitry
Scriptable interface for automatic testing

[2]

Kevin Kollenda Debugging Intermittent Systems 15

Existing Debuggers DIPS

Debugger for Intermittently-Powered Systems (DIPS) 2022

Fully manipulates the device’s energy input
Utilizes in-built debugging circuitry

Scriptable interface for automatic testing

[2]

Kevin Kollenda Debugging Intermittent Systems 15

Existing Debuggers DIPS

Debugger for Intermittently-Powered Systems (DIPS) 2022

Fully manipulates the device’s energy input
Utilizes in-built debugging circuitry
Scriptable interface for automatic testing

[2]
Kevin Kollenda Debugging Intermittent Systems 15

Existing Debuggers Comparison

EDB DIPS

Debugger Design

Software Hardware

Energy Management

Partial Full

GDB-Based

No Yes

Energy-neutral Debugging

Yes Yes

Breakpoints

Software Software & Hardware

Automated Testing

No Yes

Single Stepping

No Yes

Supported Architectures

MSP430 ARM

Kevin Kollenda Debugging Intermittent Systems 16

Existing Debuggers Comparison

EDB DIPS

Debugger Design Software

Hardware

Energy Management Partial

Full

GDB-Based No

Yes

Energy-neutral Debugging Yes

Yes

Breakpoints Software

Software & Hardware

Automated Testing No

Yes

Single Stepping No

Yes

Supported Architectures MSP430

ARM

Kevin Kollenda Debugging Intermittent Systems 16

Existing Debuggers Comparison

EDB DIPS

Debugger Design Software Hardware
Energy Management Partial Full
GDB-Based No Yes
Energy-neutral Debugging Yes Yes
Breakpoints Software Software & Hardware
Automated Testing No Yes
Single Stepping No Yes
Supported Architectures MSP430 ARM

Kevin Kollenda Debugging Intermittent Systems 16

Future Research

Support additional architectures

Improve energy emulation hardware
Incorporate existing testing frameworks (i.e. fuzzing, …)
Progress in non-volatile technologies lessen impact of intermittency

[3]

Kevin Kollenda Debugging Intermittent Systems 17

Less state to be saved and or removed entirely

Future Research

Support additional architectures
Improve energy emulation hardware

Incorporate existing testing frameworks (i.e. fuzzing, …)
Progress in non-volatile technologies lessen impact of intermittency

[3]

Kevin Kollenda Debugging Intermittent Systems 17

Less state to be saved and or removed entirely

Future Research

Support additional architectures
Improve energy emulation hardware
Incorporate existing testing frameworks (i.e. fuzzing, …)

Progress in non-volatile technologies lessen impact of intermittency

[3]

Kevin Kollenda Debugging Intermittent Systems 17

Less state to be saved and or removed entirely

Future Research

Support additional architectures
Improve energy emulation hardware
Incorporate existing testing frameworks (i.e. fuzzing, …)
Progress in non-volatile technologies lessen impact of intermittency

[3]

Kevin Kollenda Debugging Intermittent Systems 17

Less state to be saved and or removed entirely

Conclusion

Summary

Intermittent systems pose unique challenges to existing debuggers

Energy-neutral debugging via energy-guards
Real-world energy conditions provided by energy emulator

Requires tight integration between energy emulator and debugger
Bright future for intermittent devices

⇒ Increase IoT sustainability by reducing the need for batteries

Kevin Kollenda Debugging Intermittent Systems 18

Summary

Intermittent systems pose unique challenges to existing debuggers
Energy-neutral debugging via energy-guards

Real-world energy conditions provided by energy emulator
Requires tight integration between energy emulator and debugger
Bright future for intermittent devices

⇒ Increase IoT sustainability by reducing the need for batteries

Kevin Kollenda Debugging Intermittent Systems 18

Summary

Intermittent systems pose unique challenges to existing debuggers
Energy-neutral debugging via energy-guards
Real-world energy conditions provided by energy emulator

Requires tight integration between energy emulator and debugger
Bright future for intermittent devices

⇒ Increase IoT sustainability by reducing the need for batteries

Kevin Kollenda Debugging Intermittent Systems 18

Summary

Intermittent systems pose unique challenges to existing debuggers
Energy-neutral debugging via energy-guards
Real-world energy conditions provided by energy emulator

Requires tight integration between energy emulator and debugger

Bright future for intermittent devices

⇒ Increase IoT sustainability by reducing the need for batteries

Kevin Kollenda Debugging Intermittent Systems 18

Summary

Intermittent systems pose unique challenges to existing debuggers
Energy-neutral debugging via energy-guards
Real-world energy conditions provided by energy emulator

Requires tight integration between energy emulator and debugger
Bright future for intermittent devices

⇒ Increase IoT sustainability by reducing the need for batteries

Kevin Kollenda Debugging Intermittent Systems 18

Summary

Intermittent systems pose unique challenges to existing debuggers
Energy-neutral debugging via energy-guards
Real-world energy conditions provided by energy emulator

Requires tight integration between energy emulator and debugger
Bright future for intermittent devices

⇒ Increase IoT sustainability by reducing the need for batteries

Kevin Kollenda Debugging Intermittent Systems 18

Questions?

Appendix EDB Energy-Guards

EDB providing assertions with power using energy-guards [1]
Kevin Kollenda Debugging Intermittent Systems

Appendix EDB printf

Impact of guarded printf calls [1]
Kevin Kollenda Debugging Intermittent Systems

Appendix DIPS Latencies

DIPS initial and reconnection latencies [2]

Kevin Kollenda Debugging Intermittent Systems

References (1)

A. Colin, G. Harvey, B. Lucia, and A. P. Sample.
An energy-interference-free hardware-software debugger for
intermittent energy-harvesting systems.
In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, page 577–589, New York, NY, USA, 2016.
Association for Computing Machinery.
J. de Winkel, T. Hoefnagel, B. Blokland, and P. Pawełczak.
Dips: Debug intermittently-powered systems like any embedded
system.

Kevin Kollenda Debugging Intermittent Systems

References (2)

In Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’22, page 222–235, New York, NY, USA, 2023.
Association for Computing Machinery.
Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie,
J. Shu, and H. Yang.
Ambient energy harvesting nonvolatile processors: From circuit to
system.
In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–6, 2015.

Kevin Kollenda Debugging Intermittent Systems

	Intermittent Systems
	Debugging Challenges
	Intermittent Systems Debugging
	Existing Solutions & Further Research
	Conclusion
	Appendix

