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Motivation
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Not even 60_% of batteries are recycled ---  

Batteries need to be replaced/recharged periodically ---  

Bad for sustainability and labour costs ---  
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Intermittent Systems



Intermittent Systems

Removal of batteries in favor of (super)-capacitors

Harvest energy from external sources (solar, thermal, ...)
Execution is frequently interrupted due to power loss
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Intermittency can mean anything from power loss multiple times per second (cash cards) or a few times per minute 
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Intermittent Systems

How can we ensure reliable program execution considering
the rapidly changing energy inputs?
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Reliable Execution

Checkpointing
Save volatile state to non-volatile memory
Restore from checkpoint after power loss

Task-Based Programming
Program is divided into tasks
Tasks are only run when there is enough energy available

Non-Volatile Systems
Conventional DRAM can be replaced by NVRAM
Non-volatile microarchitectures for processors
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Errors in Intermittent Systems

Volatile State Restoration
Volatile System State

Processor State
 

program counter := 0x42

Memory
 

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

0x0C 0x0D 0x0E 0x0F

Processor State
 

program counter := 0x42

Memory
 

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0xEE

0xF1 0x32 0x45 0xDA

0x27 0xCF 0x01 0x00

power failure

Peripheral State Restoration
1sensor = I n i t i a l i z e Senso r ( ) ;
2Ca l ib ra te ( sensor ) ;
3while ( data = Read ( sensor ) ) {
4Checkpoint ( ) ;
5// <Power failure occurs>
6Transmit ( data ) ;
7}
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Faulty checkpointing leads to partially restore memory ---  

Execution continues at same place but with bad memory ---  

Periphery state is "external" and needs to be handled separately ---  

Example fails at the next time it evaluates the loop's condition ---  
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Debugging Challenges



Energy Behaviour

Common debugging methods increase the system’s power draw:

Toggling an LED upon reaching a certain line of code
Tracing program flow using printf
Streaming log output to external devices (serial, I²C, ...)
Assertions for simple invariants and complex data structures

Established embedded system debuggers do not account for this and
require that the device under test is continuously powered.

⇒ Intermittent systems require purpose-built energy-aware debuggers
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Some embedded debuggers also power the devices themselves ---  

System emulation has its own share of problems, only mention on question ---  
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Software-Based Debugger Issues

Snippet (a)
1 Checkpoint();
2 t o t a l = NVM_Load ( ) ;
3 fo r i < N {
4

5

6 t o t a l += Sense ( ) ;
7 NVM_Store ( t o t a l ) ;
8 }
9 // i gets saved
10 Checkpoint();

Snippet (b)
1Checkpoint();
2t o t a l = NVM_Load ( ) ;
3fo r i < N {
4// i gets saved
5DBG_Breakpoint();
6t o t a l += Sense ( ) ;
7NVM_Store ( t o t a l ) ;
8}
9

10Checkpoint();

Software-based debuggers can alter the program’s behaviour!
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Requirements for an Intermittent System Debugger

Intermittent system debuggers must not only provide energy-neutrality
for existing debugging operations, like

Breakpoints with single-stepping
Output tracing & assertions
Reading from and writing to device memory

but also be able to manipulate the device’s energy input to enable the

Recording of the device’s energy consumption
Manual injection of power failures
Replay of previously captured energy traces
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Intermittent Systems Debugging



Energy Emulation Comparison Choice #1

MicrocontrollerEnergy Emulator

Full Energy Management

Microcontroller

Energy Emulator

Power Supply

Partial Energy Management

Full energy emulation:

Replaces device’s power supply
Enables energy trace replay
Simulated components

Partial energy emulation:
Hooks into existing circuitry
Closer to real-world conditions
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Debugger Design Choice #2

Software-based debuggers:

Offer software library
Impact program behaviour
Low barrier of entry

Hardware-based debuggers:
Connect to processor’s in-built
debugging circuitry
Debugging tasks are offloaded
Increased energy consumption

Regardless of the debugger’s kind:

Standalone or built upon existing debuggers (i.e. GDB)
Energy management interface
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Energy-Neutrality

Intrusive debugging always consumes additional energy.

How can we achieve realistic conditions during debugging?
Energy-Guards [1]
Neutralize the energy impact of certain actions or code snippets.

In practice:

Energy Guards

Operational Threshold
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Bringing it all together

Energy Emulator Device under Test

Debugger

Energy Harvesting

Sensors

Wireless Modules

Displays

→ Mask energy footprint of complex assertions

→ Pause energy consumption during breakpoints

→ Recreate previously recorded energy environments

⇒ Debug intermittent systems like regular embedded systems
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Existing Solutions & Further
Research



Existing Debuggers EDB

Energy-Interference-Free Debugger (EDB) 2016

Hooks into existing energy circuit
Provides software library for debugging
First available intermittent system debugger

[1]
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Existing Debuggers DIPS

Debugger for Intermittently-Powered Systems (DIPS) 2022

Fully manipulates the device’s energy input
Utilizes in-built debugging circuitry
Scriptable interface for automatic testing

[2]
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Existing Debuggers Comparison

EDB DIPS

Debugger Design

Software Hardware

Energy Management

Partial Full

GDB-Based

No Yes

Energy-neutral Debugging

Yes Yes

Breakpoints

Software Software & Hardware

Automated Testing

No Yes

Single Stepping

No Yes

Supported Architectures

MSP430 ARM
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Future Research

Support additional architectures

Improve energy emulation hardware
Incorporate existing testing frameworks (i.e. fuzzing, …)
Progress in non-volatile technologies lessen impact of intermittency

[3]
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Questions?



Appendix EDB Energy-Guards

EDB providing assertions with power using energy-guards [1]
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Appendix EDB printf

Impact of guarded printf calls [1]
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Appendix DIPS Latencies

DIPS initial and reconnection latencies [2]
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