
opendir/readdir(3)
opendir/readdir(3)

N
A

M
E

opendir −
 open a directory / readdir −

 read a directory

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
dirent.h>

D
IR

 *opendir(const char *n
a

m
e);

struct dirent *readdir(D
IR

 *
d

ir);
int readdir_r(D

IR
 *

d
irp,struct dirent *

e
n

try,struct dirent **
resu

lt);

D
E

S
C

R
IP

T
IO

N
 opendir

T
he

opendir()
function opens a directory stream

 corresponding to the directory
n

a
m

e,and returns a pointer
to the directory stream

.
T

he stream
 is positioned at the first entry in the directory.

R
E

T
U

R
N

 VA
LU

E
T

he
opendir()

function returns a pointer to the directory stream
 or N

U
LL if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir

T
he

readdir()
function returns a pointer to a dirent structure representing the next directory entry in the

directory stream
 pointed to bydir.

Itreturns N
U

LL on reaching the end-of-file or if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir_r

T
he

readdir_r()
function initializes the structure referenced by

e
n

try
and storesa

pointer to this structure
in

resu
lt.

O
n

successful return, the pointer returned at
*re

su
ltw

ill have the sam
evalue as

the
argum

ent
e

n
try.U

pon reaching the end of the directory stream
, this pointer w

ill ha
ve the value N

U
LL.

T
he data returned byreaddir()

is overw
ritten by subsequent calls toreaddir()

for the
sam

e
directory

stream
.

T
he

d
ire

n
tstructure is defined as follow

s:

struct dirent {
long

d_ino;
/* inode num

ber */
off_t

d_off;
/*

offset to the next dirent */
unsigned shortd_reclen;

/*length of this record */
unsigned chard_type;

/*type of file */
char

d_nam
e[256];/* filenam

e */
};

R
E

T
U

R
N

 VA
LU

E
T

he
readdir()

function returns a pointer to a dirent structure, or N
U

LL if an error occurs or end-of-file is
reached.

readdir_r()
returns 0if successful or an error num

ber to indicate failure.

E
R

R
O

R
SE

A
C

C
E

SP
erm

ission denied.

E
N

O
E

N
TD

irectory does not exist, orna
m

eis an em
pty string.

E
N

O
T

D
IRn

a
m

eis not a directory.

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

F
N

M
A

T
C

H
(3)

F
N

M
AT

C
H

(3)

N
A

M
E

fnm
atch −

 m
atch filenam

e or pathnam
e

S
Y

N
O

P
S

IS#include <
fnm

atch.h>

int fnm
atch(const char *p

a
tte

rn,const char *strin
g,int

flag
s);

D
E

S
C

R
IP

T
IO

N
T

he
fnm

atch() function checks w
hether thestrin

g
argum

ent m
atches thepa

tte
rn

argum
ent, w

hich is a shell
w

ildcard pattern.

T
he

flag
sargum

ent m
odifies the behavior; it is the bitw

ise O
R

 of zero or m
ore of the follow

ing flags:

F
N

M
_N

O
E

S
C

A
P

E
If this flag is set, treat backslash as an ordinary character

,instead of an escape character.

F
N

M
_P

AT
H

N
A

M
E

If this flag is set, m
atch a slash instrin

g
only w

ith a slash inp
a

tte
rn

and not by an asterisk (*) or a
question m

ark (?) m
etacharacter

,nor by a bracket expression ([]) containing a slash.

F
N

M
_P

E
R

IO
D

If this flag is set, a leading period instrin
g

has to be m
atched exactly by a period in

p
a

tte
rn.

A
period is considered to be leading if it is the first character in

strin
g,

or
if

both
F

N
M

_P
AT

H
-

N
A

M
E

is set and the period im
m

ediately follow
s a slash.

F
N

M
_F

ILE
_N

A
M

E
T

his is a G
N

U
 synonym

 forFN
M

_P
AT

H
N

A
M

E
.

F
N

M
_LE

A
D

IN
G

_D
IR

If this flag (a G
N

U
 extension) is set, the pattern is considered to be m

atched if it m
atches an initial

segm
ent ofstrin

g
w

hich is follow
ed by a slash.

T
his flag is m

ainly for the internal use of glibc and
is only im

plem
ented in certain cases.

F
N

M
_C

A
S

E
F

O
LD

If this flag (a G
N

U
 extension) is set, the pattern is m

atched case-insensiti
vely.

R
E

T
U

R
N

 VA
LU

E
Z

ero ifstrin
g

m
atchesp

a
tte

rn,F
N

M
_N

O
M

AT
C

H
if there is no m

atch or another nonzero value if there is
an error.

C
O

N
F

O
R

M
IN

G
 T

O
P

O
S

IX
.2.

T
heF

N
M

_F
ILE

_N
A

M
E

,
F

N
M

_LE
A

D
IN

G
_D

IR
,

and
F

N
M

_C
A

S
E

F
O

LD
flags are G

N
U

extensions.

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

fopen/fdopen/fileno(3)
fopen/fdopen/fileno(3)

N
A

M
E

fopen, fdopen, fileno −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follow

ing sequences (A
dditional characters

m
ay follow

these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.
T

he file is created if it does not e
xist, otherw

ise it is truncated.The
stream

 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).The file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.M
odes "w

" or "w
+

" do not cause truncation of the file.
T

he file descriptor is not
dup’ed, and w

ill be closed w
hen the stream

 created by
fdopen

is closed.
T

he result of applyingfdopen
to a

shared m
em

ory object is undefined.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

gets(3)
gets(3)

N
A

M
E

gets, fgets −
 get a string from

 a stream
fputs, puts −

 output of strings

S
Y

N
O

P
S

IS#include <
stdio.h>

char *gets(char *s);

char *fgets(char *s,int
n,F

ILE
*stre

a
m);

int fputs(const char *s,F
ILE

 *
stre

a
m);

int puts(const char *s);

D
E

S
C

R
IP

T
IO

N
 gets/fgets

T
he

gets()function reads characters from
 the standard input stream

 (see
intro

(3)),stdin,
into the array

pointed to bys,
until a new

line character is read or an end-of-file condition is encountered.
T

he new
line

character is discarded and the string is term
inated w

ith a null character.

T
he

fgets()function reads characters from
 the

stre
a

m
into the array pointed to bys,

until
n−

1 characters
are read, or a newline character is read and transferred to

s,or
an

end-of-file condition is encountered.The
string is then term

inated w
ith a null character.

W
hen usinggets(),

if
the length of an input line exceeds the size of

s,
indeterm

inate behavior m
ay result.

F
or

this reason, it is strongly recom
m

ended that
gets()be avoided in favor

of
fgets().

R
E

T
U

R
N

 VA
LU

E
S

If end-of-file is encountered and no characters ha
ve been read, no characters are transferred to

s
and a null

pointer is returned.If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a null pointer is returned and the error indicator for the stream

 is set.
If end-of-file is

encountered, theEO
F

indicator for the stream
 is set.

O
therw

ise
s

is returned.

E
R

R
O

R
ST

he
gets()and

fgets()functions w
ill fail if data needs to be read and:

E
O

V
E

R
F

LO
W

T
he file is a regular file and an attem

pt w
as m

ade to read at or beyond the offset m
axi-

m
um

 associated w
ith the corresponding

stre
a

m.

D
E

S
C

R
IP

T
IO

N
 puts/fputs

fputs()
w

rites the strings
to

stre
a

m,w
ithout its trailing’\0’.

puts()w
rites the strings

and a trailing new
line tostd

o
u

t.

C
alls to the functions described here can be m

ix
ed w

ith each other and w
ith calls to other output functions

from
 thestdio

library for the sam
e output stream

.

R
E

T
U

R
N

 VA
LU

E
puts()and

fputs()
return a non - negative num

ber on success, or
E

O
F

on error.

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

pthread_create/pthread_e
xit(3)

pthread_create/pthread_e
xit(3)

N
A

M
E

pthread_create −
 create a ne

w
thread / pthread_exit −

 term
inate the calling thread

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_create(pthread_t *
th

re
a

d,
pthread_attr_t *

a
ttr,

void * (*
sta

rt_
ro

u
tin

e)(void *), void *
a

rg);

void pthread_exit(void *retva
l);

D
E

S
C

R
IP

T
IO

N
pthread_create

creates a new
thread of control that executes concurrently w

ith the calling thread. T
he ne

w
thread applies the functionsta

rt_
ro

u
tin

epassing ita
rg

as first argum
ent. T

he new
thread term

inates either
explicitly,by

calling
pthread_exit(3), or im

plicitly,by
returning from

 thesta
rt_

ro
u

tin
efunction. T

he latter
case is equivalent to callingpthread_exit(3) w

ith the result returned bysta
rt_

ro
u

tin
eas exit code.

T
he

a
ttr

argum
ent specifies thread attrib

utes to be applied to the ne
w

thread. S
eepthread_attr_init(3) for a

com
plete list of thread attributes. T

he
a

ttr
argum

ent can also beNU
LL

,in
w

hich case default attributes are
used: the created thread is joinable (not detached) and has default (non real-tim

e) scheduling polic
y.

pthread_exitterm
inates the execution of the calling thread.All cleanup handlers that ha

ve been set for the
calling thread w

ithpthread_cleanup_push(3) are executed in reverse order (the m
ost recently pushed han-

dler is executed first). F
inalization functions for thread-specific data are then called for all k

eys
that have

non-N
U

LL
values associated w

ith them
 in the calling thread (see

pthread_key_create(3)).
F

inally,
exe-

cution of the calling thread is stopped.

T
he

retva
l

argum
ent is the return value of the thread. It can be consulted from

 another thread using
pthread_join

(3).

R
E

T
U

R
N

 VA
LU

E
O

n success, the identifier of the ne
w

ly created thread is stored in the location pointed by the
th

re
a

d
argu-

m
ent, and a 0 is returned. O

n error
,a

non-zero error code is returned.

T
he

pthread_exitfunction never
returns.

E
R

R
O

R
SE

A
G

A
IN

not enough system
 resources to create a process for the ne

w
thread.

E
A

G
A

IN
m

ore thanP
T

H
R

E
A

D
_T

H
R

E
A

D
S

_M
A

X
threads are already acti

ve.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_join

(3),pthread_detach(3),pthread_attr_init(3).

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

pthread_detach(3)
pthread_detach(3)

N
A

M
E

pthread_detach −
 put a running thread in the detached state

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_detach(pthread_t th);

D
E

S
C

R
IP

T
IO

N
pthread_detach

put the threadth
in the detached state. T

his guarantees that the m
em

ory resources con-
sum

ed byth
w

ill be freed im
m

ediately w
henth

term
inates. H

ow
ever, this prevents other threads from

 syn-
chronizing on the term

ination ofthusing
pthread_join

.

A
thread can be created initially in the detached state, using the

detachstateattribute topthread_create(3).
In contrast,pthread_detach

applies to threads created in the joinable state, and w
hich need to be put in the

detached state later.

A
fter

pthread_detach
com

pletes, subsequent attem
pts to perform

pthread_join
on

th
w

ill fail. If another
thread is already joining the thread

th
at the tim

epthread_detach
is called,pthread_detach

does nothing
and leaves

th
in the joinable state.

R
E

T
U

R
N

 VA
LU

E
O

n success, 0 is returned. O
n error

,a
non-zero error code is returned.

E
R

R
O

R
SE

S
R

C
H

N
o thread could be found corresponding to that specified by

th

E
IN

VA
L

the threadth
is already in the detached state

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_create(3),pthread_join

(3),pthread_attr_setdetachstate(3).

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

printf(3)
printf(3)

N
A

M
E

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf −
 form

atted output con
version

S
Y

N
O

P
S

IS#include <
stdio.h>

int printf(const char *
fo

rm
a

t,...);
int fprintf(F

ILE
 *

stre
a

m,const char *fo
rm

a
t,...);

int sprintf(char *
str,const char *fo

rm
a

t,...);
int snprintf(char *

str,size_tsize,const char *fo
rm

a
t,...);

...

D
E

S
C

R
IP

T
IO

N
T

he functions in theprintf() fam
ily produce output according to aform

a
tas described below.

The func-
tions

printf() and
vprintf() w

rite output tostd
o

u
t,

the standard output stream
;

fprintf
() and

vfprintf
()

w
rite output to the given

outputstre
a

m;
sprintf(),snprintf(),vsprintf() and

vsnprintf() w
rite to the char-

acter stringstr.

T
he functionssnprintf() and

vsnprintf() w
rite at m

ostsize
bytes (including the trailing null byte ('\0')) to

str.

T
he

functions
vprintf(),

vfprintf
(),

vsprintf(),
vsnprintf()

are
equivalent

to
the

functionsprintf(),
fprintf

(),sprintf(),snprintf(), respectively,
except that they

are called w
ith ava

_
listinstead of a variable

num
ber of argum

ents.
T

hesefunctions do not call theva
_

e
n

d
m

acro.
B

ecausethey
inv oke the

va
_

a
rg

m
acro, the value ofap

is undefined after the call.
S

ee
stdarg(3).

T
hese eight functions w

rite the output under the control of a
fo

rm
a

tstring that specifies how
subsequent

argum
ents (or argum

ents accessed via the variable-length argum
ent facilities of

stdarg(3)) are converted for
output.

R
eturn

value
U

pon successful return, these functions return the num
ber of characters printed (not including the trailing

'\0' used to end output to strings).

T
he functionssnprintf() and

vsnprintf() do not w
rite m

ore thansize
bytes (including the trailing '\0').If

the output w
as truncated due to this lim

it then the return v
alue is the num

ber of characters (not including
the trailing '\0') w

hich would have been w
ritten to the final string if enough space had been a

vailable. T
hus,

a
return value ofsizeor m

ore m
eans that the output w

as truncated.
(S

ee also belo
w

under N
O

T
E

S
.)

If an output error is encountered, a ne
gative value is returned.

F
orm

at of the form
at string

T
he form

at string is a character string, beginning and ending in its initial shift state, if an
y.

The form
at

string is com
posed of zero or m

ore directi
ves: ordinary characters (not

%
), w

hich are copied unchanged to
the output stream

; and con
version specifications, each of w

hich results in fetching zero or m
ore subsequent

argum
ents.

E
achconversion specification is introduced by the character

%
,

and ends w
ith aco

nve
rsio

n
sp

e
cifie

r.
In

betw
een there m

ay be (in this order) zero or m
ore

flag
s,

an
optional m

inim
um

fie
ld

 w
id

th,
an

optionalp
re

cisio
nand an optionalle

n
g

th
 m

o
d

ifie
r.

T
he argum

ents m
ust correspond properly (after type prom

otion) w
ith the con

version specifier.
B

y
default,

the argum
ents are used in the order gi

ven, w
here each '*' and each con

version specifier asks for the ne
xt

argum
ent (and it is an error if insufficiently m

an
y

argum
ents are given).

O
ne

can also specify explicitly
w

hich argum
ent is taken, at each place w

here an ar
gum

ent is required, by w
riting "%

m
$" instead of '%

' and
"*m

$" instead of '*', w
here the decim

al integer m
 denotes the position in the ar

gum
ent list of the desired

argum
ent, indexed

starting from
 1.

T
hus,

printf("%
*d", w

idth, num
);

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

printf(3)
printf(3)

and

printf("%
2$*1$d", w

idth, num
);

are equivalent.
T

hesecond style allows repeated references to the sam
e ar

gum
ent.

T
heC

99 standard does
not include the style using '$', w

hich com
es from

 the S
ingle U

nix S
pecification.

If the style using '$' is
used, it m

ust be used throughout for all con
versions taking an argum

ent and all w
idth and precision ar

gu-
m

ents, but it m
ay be m

ixed w
ith "%

%
" form

ats w
hich do not consum

e an ar
gum

ent. T
herem

ay be no gaps
in the num

bers of argum
ents specified using '$'; for exam

ple, if ar
gum

ents 1 and 3 are specified, argum
ent 2

m
ust also be specified som

ew
here in the form

at string.

F
or

som
e num

eric conversions a radix character ("decim
al point") or thousands’ grouping character is used.

T
he actual character used depends on the

LC
_N

U
M

E
R

IC
part of the locale.T

he P
O

S
IX

 locale uses '.' as
radix character,and does not have a grouping character.T

hus,

printf("%
'.2f", 1234567.89);

results in "1234567.89" in the P
O

S
IX

 locale, in "1234567,89" in the nl_N
L locale, and in "1.234.567,89" in

the da_D
K

 locale.

T
he conversion specifier

A
character that specifies the type of con

version to be applied.
A

n exam
ple for a con

version specifier is:

s
T

he
co

n
st ch

a
r *argum

ent is expected to be a pointer to an array of character type (pointer to a
string).

C
haractersfrom

 the array are w
ritten up to (but not including) a term

inating null byte
('\0'); if a precision is specified, no m

ore than the num
ber specified are w

ritten.
If a precision is

given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array,the array m

ust contain a term
inating null byte.

S
E

E
 A

LS
Oprintf(1),asprintf(3),dprintf(3),scanf(3),setlocale(3),w

crtom
b

(3),w
printf(3),locale(5)

C
O

LO
P

H
O

N
T

his page is part of release 3.05 of the Linux
m

a
n

-p
ages

project. A
description of the project, and inform

a-
tion about reporting bugs, can be found at http://w

w
w

.kernel.org/doc/m
an-pages/.

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

2

stat(2)
stat(2)

N
A

M
E

stat, fstat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int fstat(int
fd

,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

lstat(): _B
S

D
_S

O
U

R
C

E
 || _X

O
P

E
N

_S
O

U
R

C
E

 >
=

 500

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about a file.

N
o perm

issions are required on the file itself, but —
 in the

case ofstat() andlstat() —
 execute (search) perm

ission is required on all of the directories in
p

a
th

that lead
to the file.

stat() stats the file pointed to bypa
th

and fills in
buf.

lstat() is identical tostat(), except that ifp
a

th
is a sym

bolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptor
fd

.

A
ll of these system

 calls return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*ID

 of device containing file */
ino_t

st_ino;
/*inode num

ber */
m

ode_t
st_m

ode;
/*protection */

nlink_t
st_nlink;

/*num
ber of hard links */

uid_t
st_uid;

/*user ID
 of ow

ner */
gid_t

st_gid;
/*group ID

 of ow
ner */

dev_t
st_rdev;

/*
device ID

 (if special file) */
off_t

st_size;
/* total size, in bytes */

blksize_t st_blksize; /* blocksize for file system
 I/O

 */
blkcnt_t st_blocks; /*num

ber of blocks allocated */
tim

e_t
st_atim

e;/* tim
e of last access */

tim
e_t

st_m
tim

e;/* tim
e of last m

odification */
tim

e_t
st_ctim

e;/* tim
e of last status change */

};

T
he

st_
d

evfield describes the device on w
hich this file resides.

T
he

st_
rd

evfield describes the device that this file (inode) represents.

T
he

st_
sizefield gives

the size of the file (if it is a regular file or a sym
bolic link) in bytes.

T
he size of a

sym
link is the length of the pathnam

e it contains, w
ithout a trailing null byte.

T
he

st_
b

lo
cksfield indicates the num

ber of blocks allocated to the file, 512-byte units.
(T

his m
ay be

sm
aller thanst_

size/512 w
hen the file has holes.)

T
he

st_
b

lksizefield gives
the "preferred" blocksize for efficient file system

 I/O
.

(W
riting to a file in sm

aller
chunks m

ay cause an inefficient read-m
odify-rew

rite.)

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

1

stat(2)
stat(2)

N
ot all of the Linux file system

s im
plem

ent all of the tim
e fields.

S
om

e file system
 types allo

w
m

ounting in
such a w

ay that file accesses do not cause an update of the
st_

a
tim

efield. (S
ee"noatim

e" inm
ount(8).)

T
he field

st_
a

tim
eis changed by file accesses, for exam

ple, by
execve(2),m

knod(2),pipe(2),utim
e(2) and

read(2) (of m
ore than zero bytes).

O
ther routines, like

m
m

ap(2), m
ay or m

ay not updatest_
a

tim
e.

T
he field

st_
m

tim
eis changed by file m

odifications, for exam
ple, by

m
knod(2),truncate(2),utim

e(2) and
w

rite
(2) (of m

ore than zero bytes).Moreover,
st_

m
tim

eof a directory is changed by the creation or dele-
tion of files in that directory.

T
he

st_
m

tim
efield is

n
o

tchanged for changes in o
w

ner,
group, hard link

count, or m
ode.

T
he field

st_
ctim

eis changed by w
riting or by setting inode inform

ation (i.e., o
w

ner,
group, link count,

m
ode, etc.).

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type using the

st_
m

o
d

efield:

S
_IS

R
E

G
(m

)
is

it a regular file?

S
_IS

D
IR

(m
)

directory?

S
_IS

C
H

R
(m

)
characterdevice?

S
_IS

B
LK

(m
)

blockdevice?

S
_IS

F
IF

O
(m

)
F

IF
O

(nam
ed pipe)?

S
_IS

LN
K

(m
)

sym
boliclink? (N

ot in P
O

S
IX

.1-1996.)

S
_IS

S
O

C
K(m

)
socket? (N

ot in P
O

S
IX

.1-1996.)

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

SS
earch perm

ission is denied for one of the directories in the path prefix of
p

a
th.

(S
ee also

path_resolution(7).)

E
B

A
D

F
fd

is bad.

E
FA

U
LTB

ad address.

E
LO

O
P

Too
m

any
sym

bolic links encountered w
hile tra

versing the path.

E
N

A
M

E
T

O
O

LO
N

G
F

ile nam
e too long.

E
N

O
E

N
TA

com
ponent of the pathpa

th
does not exist, or the path is an em

pty string.

E
N

O
M

E
MO

ut of m
em

ory (i.e., kernel m
em

ory).

E
N

O
T

D
IRA

com
ponent of the path is not a directory.

S
E

E
 A

LS
Oaccess(2),chm

od(2),chow
n(2),fstatat(2),readlink

(2),utim
e(2),capabilities(7),sym

link(7)

G
S

P
-K

lausur M
anual-A

uszug
2013-07-23

2

