
alarm
(2)

alarm
(2)

N
A

M
E

alarm
 −

 set an alarm
 clock for deli

very of a signal

S
Y

N
O

P
S

IS#include <
unistd.h>

unsigned int alarm
(unsigned intse

co
n

d
s);

D
E

S
C

R
IP

T
IO

N
alarm

() arranges for aS
IG

A
LR

M
signal to be delivered to the calling process inse

co
n

d
sseconds.

If
se

co
n

d
sis zero, no newalarm

() is scheduled.

In any
event any

previously setalarm
() is canceled.

R
E

T
U

R
N

 VA
LU

E
alarm

() returns the num
ber of seconds rem

aining until an
y

previously scheduled alarm
 w

as due to be deli
v-

ered, or zero if there w
as no previously scheduled alarm

.

C
O

N
F

O
R

M
IN

G
 T

O
S

V
r4, P

O
S

IX
.1-2001, 4.3B

S
D

.

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

opendir/readdir(3)
opendir/readdir(3)

N
A

M
E

opendir −
 open a directory / readdir −

 read a directory

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
dirent.h>

D
IR

 *opendir(const char *n
a

m
e);

struct dirent *readdir(D
IR

 *
d

ir);
int readdir_r(D

IR
 *

d
irp,struct dirent *

e
n

try,struct dirent **
resu

lt);

D
E

S
C

R
IP

T
IO

N
 opendir

T
he

opendir()
function opens a directory stream

 corresponding to the directory
n

a
m

e,and returns a pointer
to the directory stream

.
T

he stream
 is positioned at the first entry in the directory.

R
E

T
U

R
N

 VA
LU

E
T

he
opendir()

function returns a pointer to the directory stream
 or N

U
LL if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir

T
he

readdir()
function returns a pointer to a dirent structure representing the next directory entry in the

directory stream
 pointed to bydir.

Itreturns N
U

LL on reaching the end-of-file or if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir_r

T
he

readdir_r()
function initializes the structure referenced by

e
n

try
and storesa

pointer to this structure
in

resu
lt.

O
n

successful return, the pointer returned at
*re

su
ltw

ill have the sam
evalue as

the
argum

ent
e

n
try.U

pon reaching the end of the directory stream
, this pointer w

ill ha
ve the value N

U
LL.

T
he data returned byreaddir()

is overw
ritten by subsequent calls toreaddir()

for the
sam

e
directory

stream
.

T
he

d
ire

n
tstructure is defined as follow

s:

struct dirent {
long

d_ino;
/* inode num

ber */
off_t

d_off;
/*

offset to the next dirent */
unsigned shortd_reclen;

/*length of this record */
unsigned chard_type;

/*type of file */
char

d_nam
e[256];/* filenam

e */
};

R
E

T
U

R
N

 VA
LU

E
T

he
readdir()

function returns a pointer to a dirent structure, or N
U

LL if an error occurs or end-of-file is
reached.

readdir_r()
returns 0if successful or an error num

ber to indicate failure.

E
R

R
O

R
SE

A
C

C
E

SP
erm

ission denied.

E
N

O
E

N
TD

irectory does not exist, orna
m

eis an em
pty string.

E
N

O
T

D
IRn

a
m

eis not a directory.

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

fork(2)
fork(2)

N
A

M
E

fork −
 create a child process

S
Y

N
O

P
S

IS#include <
unistd.h>

pid_t fork(void);

D
E

S
C

R
IP

T
IO

N
fork

() creates a new
process by duplicating the calling process.

T
he ne
w

process, referred to as the
child

,is
an exact duplicate of the calling process, referred to as the

p
a

re
n

t,except for the follow
ing points:

*
T

he child has its ow
n unique process ID

, and this P
ID

 does not m
atch the ID

 of an
y

existing process
group (setpgid(2)).

*
T

he child’s
parent process ID

 is the sam
e as the parent’

s
process ID

.

*
T

he child does not inherit its parent’
s

m
em

ory locks (m
lock(2),m

lockall(2)).

*
P

rocess resource utilizations (
getrusage(2)) and C

P
U

 tim
e counters (

tim
es(2)) are reset to zero in the

child.

*
T

he child’s
set of pending signals is initially em

pty (
sigpending(2)).

*
T

he child does not inherit sem
aphore adjustm

ents from
 its parent (

sem
op(2)).

*
T

he child does not inherit record locks from
 its parent (

fcntl(2)).

*
T

he child does not inherit tim
ers from

 its parent (
setitim

er(2),alarm
(2),tim

er_create(2)).

*
T

he child does not inherit outstanding asynchronous I/O
 operations from

 its parent (
aio_read(3),

aio_w
rite(3)), nor does it inherit anyasynchronous I/O

 contexts from
 its parent (see

io_setup(2)).

T
he process attributes in the preceding list are all specified in P

O
S

IX
.1-2001.

T
he parent and child also

differ w
ith respect to the follow

ing Linux-specific process attributes:

*
T

he child does not inherit directory change notifications (dnotify) from
 its parent (see the description of

F
_N

O
T

IF
Y

in
fcntl(2)).

*
T

he
prctl(2)P

R
_S

E
T

_P
D

E
AT

H
S

IG
setting is reset so that the child does not recei

ve a signal w
hen its

parent term
inates.

*
M

em
ory m

appings that have been m
arked w

ith them
advise(2)

M
A

D
V

_D
O

N
T

F
O

R
K

flag are not
inherited across afork

().

*
T

he term
ination signal of the child is al

w
ays

S
IG

C
H

LD
(seeclone(2)).

N
ote the follow

ing further points:

*
T

he child process is created w
ith a single thread —

 the one that called
fork

(). T
he

entire virtual address
space of the parent is replicated in the child, including the states of m

ute
xes, condition variables, and

other pthreads objects; the use of
pthread_atfork

(3) m
ay be helpful for dealing w

ith problem
s that this

can cause.

*
T

he child inherits copies of the parent’
s

set of open file descriptors.
E

ach file descriptor in the child
refers to the sam

e open file description (see
open(2)) as the corresponding file descriptor in the parent.

T
his m

eans that the twodescriptors share open file status flags, current file offset, and signal-dri
ven

I/O
attributes (see the description of

F
_S

E
TO

W
N

and
F

_S
E

T
S

IG
in

fcntl(2)).

*
T

he child inherits copies of the parent’
s

set of open m
essage queue descriptors (see

m
q_overview

(7)).
E

ach descriptor in the child refers to the sam
e open m

essage queue description as the corresponding
descriptor in the parent.

T
his m

eans that the tw
o

descriptors share the sam
e flags (

m
q

_
flag

s).

*
T

he child inherits copies of the parent’
s

set of open directory stream
s (see

opendir(3)). P
O

S
IX

.1-2001
says that the corresponding directory stream

s in the parent and child
m

a
y

share the directory stream
positioning; on Linux/glibc they

do
not.

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

fork(2)
fork(2)

R
E

T
U

R
N

 VA
LU

E
O

n success, the P
ID

 of the child process is returned in the parent, and 0 is returned in the child.
O

n f
ailure,

−
1 is returned in the parent, no child process is created, and

e
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
G

A
IN

fork
() cannot allocate sufficient m

em
ory to cop

y
the parent’spage tables and allocate a task struc-

ture for the child.

E
A

G
A

IN
It w

as not possible to create a ne
w

process because the caller’
s

R
LIM

IT
_N

P
R

O
C

resource lim
it

w
as

encountered.
To

exceed this lim
it, the process m

ust ha
ve either the

C
A

P
_S

Y
S

_A
D

M
IN

or
the

C
A

P
_S

Y
S

_R
E

S
O

U
R

C
Ecapability.

E
N

O
M

E
Mfork

() failed to allocate the necessary kernel structures because m
em

ory is tight.

C
O

N
F

O
R

M
IN

G
 T

O
S

V
r4, 4.3B

S
D

, P
O

S
IX

.1-2001.

N
O

T
E

S
U

nder Linux,fork
() is im

plem
ented using copy-on-w

rite pages, so the only penalty that it incurs is the tim
e

and m
em

ory required to duplicate the parent’
s

page tables, and to create a unique task structure for the
child.

S
ince version 2.3.3, rather than in

voking the kernel’s
fork

() system
 call, the glibcfork

() w
rapper that is

provided as part of the N
P

T
L threading im

plem
entation in

vokes
clone(2) w

ith flags that provide the sam
e

effect as the traditional system
 call.

T
he glibc w

rapper in
vokes

any fork handlers that have been established
using

pthread_atfork
(3).

E
X

A
M

P
LES

eepipe(2) andw
ait(2).

S
E

E
 A

LS
Oclone(2),

execve(2),
setrlim

it(2),
unshare(2),

vfork
(2),

w
ait(2),

daem
on(3),

capabilities(7),
creden-

tials(7)

C
O

LO
P

H
O

N
T

his page is part of release 3.27 of the Linux
m

a
n

-p
ages

project. A
description of the project, and inform

a-
tion about reporting bugs, can be found at http://w

w
w

.kernel.org/doc/m
an-pages/.

S
P

-K
lausur M

anual-A
uszug

2013-07-23
2

gets(3)
gets(3)

N
A

M
E

gets, fgets −
 get a string from

 a stream
fputs, puts −

 output of strings

S
Y

N
O

P
S

IS#include <
stdio.h>

char *gets(char *s);

char *fgets(char *s,int
n,F

ILE
*stre

a
m);

int fputs(const char *s,F
ILE

 *
stre

a
m);

int puts(const char *s);

D
E

S
C

R
IP

T
IO

N
 gets/fgets

T
he

gets()function reads characters from
 the standard input stream

 (see
intro

(3)),stdin,
into the array

pointed to bys,
until a new

line character is read or an end-of-file condition is encountered.
T

he ne
w

line
character is discarded and the string is term

inated w
ith a null character.

T
he

fgets()function reads characters from
 the

stre
a

m
into the array pointed to bys,

until
n−

1 characters
are read, or a new

line character is read and transferred to
s,or

an
end-of-file condition is encountered.The

string is then term
inated w

ith a null character.

W
hen usinggets(),

if
the length of an input line exceeds the size of

s,
indeterm

inate behavior m
ay result.

F
or

this reason, it is strongly recom
m

ended that
gets()be avoided in favor

of
fgets().

R
E

T
U

R
N

 VA
LU

E
S

If end-of-file is encountered and no characters ha
ve been read, no characters are transferred to

s
and a null

pointer is returned.
If a read error occurs, such as trying to use these functions on a file that has not been

opened for reading, a null pointer is returned and the error indicator for the stream
 is set.

If end-of-file is
encountered, theEO

F
indicator for the stream

 is set.
O

therw
ise
s

is returned.

E
R

R
O

R
ST

he
gets()and

fgets()functions w
ill fail if data needs to be read and:

E
O

V
E

R
F

LO
W

T
he file is a regular file and an attem

pt w
as m

ade to read at or be
yond the offset m

axi-
m

um
 associated w

ith the corresponding
stre

a
m.

D
E

S
C

R
IP

T
IO

N
 puts/fputs

fputs()
w

rites the strings
to

stre
a

m,w
ithout its trailing’\0’.

puts()w
rites the strings

and a trailing new
line tostd

o
u

t.

C
alls to the functions described here can be m

ix
ed w

ith each other and w
ith calls to other output functions

from
 thestdio

library for the sam
e output stream

.

R
E

T
U

R
N

 VA
LU

E
puts()and

fputs()
return a non - negative num

ber on success, or
E

O
F

on error.

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

K
ILL(2)

K
ILL(2)

N
A

M
E

kill −
 send signal to a process

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
signal.h>

int kill(pid_t
p

id
,int

sig);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

kill(): _P
O

S
IX

_C
_S

O
U

R
C

E
 >

=
 1 || _X

O
P

E
N

_S
O

U
R

C
E

 || _P
O

S
IX

_S
O

U
R

C
E

D
E

S
C

R
IP

T
IO

N
T

he
kill() system

 call can be used to send an
y

signal to any
process group or process.

If
p

id
is positive,then signalsig

is sent to the process w
ith the ID

 specified by
p

id.

If
p

id
equals 0, thensig

is sent to every process in the process group of the calling process.

If
p

id
equals −

1, thensig
is sent to every process for w

hich the calling process has perm
ission to send sig-

nals, except for process 1 (
in

it), but see below.

If
p

id
is less than −

1, thensig
is sent to every process in the process group w

hose ID
 is

−
p

id
.

If
sig

is 0, then no signal is sent, b
ut error checking is still perform

ed; this can be used to check for the e
xis-

tence of a process ID
 or process group ID

.

F
or

a
process to have perm

ission to send a signal it m
ust either be pri

vileged (under Linux: have the
C

A
P

_K
ILL

capability), or the real or ef
fective user ID

 of the sending process m
ust equal the real or sa

ved
set-user-ID

 of the target process.
In the case of

S
IG

C
O

N
T

it suffices w
hen the sending and receiving pro-

cesses belong to the sam
e session.

R
E

T
U

R
N

 VA
LU

E
O

n success (at least one signal w
as sent), zero is returned.

O
n error,−

1
is

returned, ande
rrn

o
is set appro-

priately.

E
R

R
O

R
SE

IN
VA

L
A

n invalid signal w
as specified.

E
P

E
R

M
T

he process does not ha
ve perm

ission to send the signal to an
y

ofthe target processes.

E
S

R
C

H
T

he pid or process group does not e
xist.

N
ote

that an existing process m
ight be a zom

bie, a
process w

hich already com
m

itted term
ination, but has not yet been

w
ait(2)ed for.

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

sigaction(2)
sigaction(2)

N
A

M
E

sigaction −
 P

O
S

IX
 signal handling functions.

S
Y

N
O

P
S

IS#include <
signal.h>

int sigaction(int
sig

n
u

m,const struct sigaction *a
ct,struct sigaction *o

ld
a

ct);

D
E

S
C

R
IP

T
IO

N
T

he
sigaction

system
 call is used to change the action taken by a process on receipt of a specific signal.

sig
n

u
m

specifies the signal and can be an
y

valid signal exceptSIG
K

ILL
and

S
IG

S
T

O
P.

If
a

ctis non−
null, the new

action for signalsig
n

u
m

is installed from
a

ct.
If

o
ld

a
ctis non−

null, the previous
action is saved

in
o

ld
a

ct.

T
he

sigaction
structure is defined as som

ething like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_m

ask;
int sa_flags;
void (*sa_restorer)(void);

}

O
n som

e architectures a union is in
volved - do not assign to bothsa

_
h

a
n

d
le

rand
sa

_
sig

a
ctio

n.

T
he

sa
_

re
sto

re
relem

ent is obsolete and should not be used.
P

O
S

IX
 does not specify asa

_
re

sto
re

rele-
m

ent.

sa
_

h
a

n
d

le
rspecifies the action to be associated w

ith
sig

n
u

m
and m

ay beS
IG

_D
F

L
for the default action,

S
IG

_IG
N

to ignore this signal, or a pointer to a signal handling function.

sa
_

m
a

skgives
a

mask of signals w
hich should be blocked during e

xecution of the signal handler
.

In
addi-

tion, the signal w
hich triggered the handler w

ill be blocked, unless the
S

A
_N

O
D

E
F

E
R

orS
A

_N
O

M
A

S
K

flags are used.

sa
_

flag
sspecifies a set of flags w

hich m
odify the beha

viour of the signal handling process. It is form
ed by

the bitw
ise O

R
 of zero or m

ore of the follow
ing:

S
A

_N
O

C
LD

S
T

O
P

If
sig

n
u

m
is

S
IG

C
H

LD
,do

not receive notification w
hen child processes stop (i.e., w

hen
child processes recei

ve one ofS
IG

S
T

O
P,S

IG
T

S
T

P
,S

IG
T

T
IN

orS
IG

T
T

O
U

).

S
A

_R
E

S
TA

R
T

P
rovide behaviour com

patible w
ith B

S
D

 signal sem
antics by m

aking certain system
 calls

restartable across signals.

R
E

T
U

R
N

 VA
LU

E
S

sigaction
returns 0 on success and -1 on error.

E
R

R
O

R
SE

IN
VA

L
A

n invalid signal w
as specified.

T
his w

ill also be generated if an attem
pt is m

ade to change the
action forS

IG
K

ILL
orS

IG
S

T
O

P,w
hich cannot be caught.

S
E

E
 A

LS
Okill(1),kill(2),killpg

(2),pause(2),sigsetops(3),

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

sigsuspend/sigprocm
ask(2)

sigsuspend/sigprocm
ask(2)

N
A

M
E

sigprocm
ask −

 change and/or exam
ine caller’

s
signal m

ask
sigsuspend −

 install a signal m
ask and suspend caller until signal

S
Y

N
O

P
S

IS#include <
signal.h>

int sigprocm
ask(inth

o
w

,const sigset_t *se
t,sigset_t *o

se
t);

int sigsuspend(const sigset_t *se
t);

D
E

S
C

R
IP

T
IO

N
 sigprocm

ask
T

he
sigprocm

ask()function is used to exam
ine and/or change the caller’

s
signal m

ask.
If the value is

S
IG

_B
LO

C
K

,
the set pointed to by the ar

gum
entse

tis added to the current signal m
ask.

If the value is
S

IG
_U

N
B

LO
C

K
,

the set pointed by the ar
gum

entse
tis rem

oved
from

 the current signal m
ask.

If the v
alue

is
S

IG
_S

E
T

M
A

S
K

,
the current signal m

ask is replaced by the set pointed to by the ar
gum

entse
t.

If
the

argum
ento

se
tis notN

U
LL

,
the previous m

ask is stored in the space pointed to by
o

se
t.

If
the value of the

argum
entse

tis
N

U
LL

,
the value

h
o

w
is not significant and the caller’

s
signal m

ask is unchanged; thus, the
call can be used to inquire about currently blocked signals.

If there are any
pending unblocked signals after the call to

sigprocm
ask(),atleast one of those signals w

ill
be delivered before the call tosigprocm

ask()returns.

It is not possible to block those signals that cannot be ignored this restriction is silently im
posed by the sys-

tem
. S

eesigaction(2).

If
sigprocm

ask()fails, the caller’s
signal m

ask is not changed.

R
E

T
U

R
N

 VA
LU

E
S

O
n success,sigprocm

ask()returns0.
O

n
failure, it returns−

1
and setserrno

to indicate the error.

E
R

R
O

R
Ssigprocm

ask()fails if any
ofthe follow

ing is true:

E
FA

U
LT

se
toro

se
tpoints to an illegaladdress.

E
IN

VA
L

T
he value of theh

o
w

argum
ent is not equal to one of the defined values.

D
E

S
C

R
IP

T
IO

N
 sigsuspend

sigsuspend()replaces the caller’
s

signal m
ask w

ith the set of signals pointed to by the ar
gum

entse
tand

then suspends the caller until deli
very of a signal w

hose action is either to e
xecute a signal catching func-

tion or to term
inate the process.

If the action is to term
inate the process,

sigsuspend()does not return.If the action is to execute a signal
catching function,sigsuspend()returns after the signal catching function returns.

O
n return, the signal

m
ask is restored to the set that existed before the call to

sigsuspend().

It is not possible to block those signals that cannot be ignored (see
signal(5)); this restriction is silently

im
posed by the system

.

R
E

T
U

R
N

 VA
LU

E
S

S
incesigsuspend()suspends process e

xecution indefinitely,there is no successful com
pletion return v

alue.
O

n failure, it returns −
1 and sets

errno
to indicate the error.

E
R

R
O

R
Ssigsuspend()fails if either of the follow

ing is true:

E
FA

U
LT

se
tpoints to an illegaladdress.

E
IN

T
R

A
signal is caught by the calling process and control is returned from

 the signal catching
function.

S
E

E
 A

LS
Osigaction(2),sigsetops(3C

),

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

sigsetops(3C
)

sigsetops(3C
)

N
A

M
E

sigsetops, sigem
ptyset, sigfillset, sigaddset, sigdelset, sigism

em
ber −

 m
anipulate sets of signals

S
Y

N
O

P
S

IS#include <
signal.h>

int sigem
ptyset(sigset_t *se

t);

int sigfillset(sigset_t *se
t);

int sigaddset(sigset_t *se
t,int

sig
n

o);

int sigdelset(sigset_t *se
t,int

sig
n

o);

int sigism
em

ber(sigset_t *se
t,int

sig
n

o);

D
E

S
C

R
IP

T
IO

N
T

hese functions m
anipulatesig

se
t_

tdata types, representing the set of signals supported by the im
plem

en-
tation.

sigem
ptyset()initializes the set pointed to byse

tto exclude all signals defined by the system
.

sigfillset()initializes the set pointed to byse
tto include all signals defined by the system

.

sigaddset()adds the individual signal specified by the value of
sig

n
o

to the set pointed to byse
t.

sigdelset()deletes the individual signal specified by the value of
sig

n
o

from
 the set pointed to byse

t.

sigism
em

ber()checks w
hether the signal specified by the value of

sig
n

o
is a m

em
ber of the set pointed to

by
se

t.

A
ny

object of type
sig

se
t_

tm
ust be initialized by applying eithersigem

ptyset()or
sigfillset()

before
applying any

other operation.

R
E

T
U

R
N

 VA
LU

E
S

U
pon successful com

pletion, thesigism
em

ber()function returns a value of one if the specified signal is a
m

em
ber of the specified set, or a value of 0 if it is not. U

pon successful com
pletion, the other functions

return a value of 0. O
therw

ise a value of −
1 is returned and

errno
is set to indicate the error.

E
R

R
O

R
Ssigaddset(),sigdelset(),and

sigism
em

ber()w
ill fail if the follow

ing is true:

E
IN

VA
L

T
he value of thesig

n
o

argum
ent is not a valid signal num

ber.

sigfillset()w
ill fail if the follow

ing is true:

E
FA

U
LT

T
he

se
targum

ent specifies an in
valid address.

S
E

E
 A

LS
Osigaction(2),sigpending(2),sigprocm

ask(2),sigsuspend(2),attributes(5),signal(5)

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

stat(2)
stat(2)

N
A

M
E

stat, fstat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int fstat(int
fd

,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

lstat(): _B
S

D
_S

O
U

R
C

E
 || _X

O
P

E
N

_S
O

U
R

C
E

 >
=

 500

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about a file.

N
o perm

issions are required on the file itself, b
ut —

 in the
case ofstat() andlstat() —

 execute (search) perm
ission is required on all of the directories in

p
a

th
that lead

to the file.

stat() stats the file pointed to bypa
th

and fills in
buf.

lstat() is identical tostat(), except that ifp
a

th
is a sym

bolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptor
fd

.

A
ll of these system

 calls return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*ID

 of device containing file */
ino_t

st_ino;
/*inode num

ber */
m

ode_t
st_m

ode;
/*protection */

nlink_t
st_nlink;

/*num
ber of hard links */

uid_t
st_uid;

/*user ID
 of ow

ner */
gid_t

st_gid;
/*group ID

 of ow
ner */

dev_t
st_rdev;

/*
device ID

 (if special file) */
off_t

st_size;
/* total size, in bytes */

blksize_t st_blksize; /* blocksize for file system
 I/O

 */
blkcnt_t st_blocks; /*num

ber of blocks allocated */
tim

e_t
st_atim

e;/* tim
e of last access */

tim
e_t

st_m
tim

e;/* tim
e of last m

odification */
tim

e_t
st_ctim

e;/* tim
e of last status change */

};

T
he

st_
d

evfield describes the device on w
hich this file resides.

T
he

st_
rd

evfield describes the device that this file (inode) represents.

T
he

st_
sizefield gives

the size of the file (if it is a regular file or a sym
bolic link) in bytes.

T
he size of a

sym
link is the length of the pathnam

e it contains, w
ithout a trailing null byte.

T
he

st_
b

lo
cksfield indicates the num

ber of blocks allocated to the file, 512-byte units.
(T

his m
ay be

sm
aller thanst_

size/512 w
hen the file has holes.)

T
he

st_
b

lksizefield gives
the "preferred" blocksize for ef

ficient file system
 I/O

.
(W

riting to a file in sm
aller

chunks m
ay cause an inefficient read-m

odify-rew
rite.)

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

stat(2)
stat(2)

N
ot all of the Linux file system

s im
plem

ent all of the tim
e fields.

S
om

e file system
 types allo

w
m

ounting in
such a w

ay that file accesses do not cause an update of the
st_

a
tim

efield. (S
ee"noatim

e" inm
ount(8).)

T
he field

st_
a

tim
eis changed by file accesses, for exam

ple, by
execve(2),m

knod(2),pipe(2),utim
e(2) and

read(2) (of m
ore than zero bytes).

O
ther routines, like

m
m

ap(2), m
ay or m

ay not updatest_
a

tim
e.

T
he field

st_
m

tim
eis changed by file m

odifications, for exam
ple, by

m
knod(2),truncate(2),utim

e(2) and
w

rite
(2) (of m

ore than zero bytes).Moreover,
st_

m
tim

eof a directory is changed by the creation or dele-
tion of files in that directory.

T
he

st_
m

tim
efield is

n
o

tchanged for changes in o
w

ner,
group, hard link

count, or m
ode.

T
he field

st_
ctim

eis changed by w
riting or by setting inode inform

ation (i.e., o
w

ner,
group, link count,

m
ode, etc.).

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type using the

st_
m

o
d

efield:

S
_IS

R
E

G
(m

)
is

it a regular file?

S
_IS

D
IR

(m
)

directory?

S
_IS

C
H

R
(m

)
characterdevice?

S
_IS

B
LK

(m
)

blockdevice?

S
_IS

F
IF

O
(m

)
F

IF
O

(nam
ed pipe)?

S
_IS

LN
K

(m
)

sym
boliclink? (N

ot in P
O

S
IX

.1-1996.)

S
_IS

S
O

C
K(m

)
socket? (N

ot in P
O

S
IX

.1-1996.)

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

SS
earch perm

ission is denied for one of the directories in the path prefix of
p

a
th.

(S
ee also

path_resolution(7).)

E
B

A
D

F
fd

is bad.

E
FA

U
LTB

ad address.

E
LO

O
P

Too
m

any
sym

bolic links encountered w
hile tra

versing the path.

E
N

A
M

E
T

O
O

LO
N

G
F

ile nam
e too long.

E
N

O
E

N
TA

com
ponent of the pathpa

th
does not exist, or the path is an em

pty string.

E
N

O
M

E
MO

ut of m
em

ory (i.e., kernel m
em

ory).

E
N

O
T

D
IRA

com
ponent of the path is not a directory.

S
E

E
 A

LS
Oaccess(2),chm

od(2),chow
n(2),fstatat(2),readlink

(2),utim
e(2),capabilities(7),sym

link(7)

S
P

-K
lausur M

anual-A
uszug

2013-07-23
2

w
aitpid(2)

w
aitpid(2)

N
A

M
E

w
aitpid −

 w
ait for child process to change state

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/w

ait.h>

pid_t w
aitpid(pid_t

p
id

,int *
sta

t_
lo

c,int
o

p
tio

n
s);

D
E

S
C

R
IP

T
IO

N
w

aitpid()
suspends the calling process until one of its children changes state; if a child process changed

state prior to the call tow
aitpid(),return is im

m
ediate.p

id
specifies a set of child processes for w

hich sta-
tus is requested.

If
p

id
is equal to(pid_t)−

1,status is requested for an
y

child process.

If
p

id
is greater than(pid_t)0,

it
specifies the processID

of the child process for w
hich status is

requested.

If
p

id
is equal to(pid_t)0

status is requested for an
y

child process w
hose process group

ID
is equal

to that of the calling process.

If
p

id
is less than(pid_t)−

1,
status is requested for an

y
child process w

hose process group
ID

is
equal to the absolute value of

p
id

.

If
w

aitpid()
returns because the status of a child process is a

vailable, then that status m
ay be e

valuated w
ith

the m
acros defined bywstat(5).

If the calling process had specified a non-zero v
alue ofsta

t_
lo

c,the status
of the child process w

ill be stored in the location pointed to by
sta

t_
lo

c.

T
he

o
p

tio
n

sargum
ent is constructed from

 the bitw
ise inclusi

ve
O

R
of zero or m

ore of the follow
ing flags,

defined in the header<sys/w
ait.h>:

W
C

O
N

T
IN

U
E

D
T

he status of any
continued child process specified by

p
id,

w
hose status has not

been reported since it continued, is also reported to the calling process.

W
N

O
H

A
N

G
w

aitpid()
w

ill not suspend execution of the calling process if status is not im
m

e-
diately available for one of the child processes specified by

p
id

.

W
N

O
W

A
IT

K
eep the process w

hose status is returned in
sta

t_
lo

c
in a w

aitable state. T
he

process m
ay be w

aited for again w
ith identical results.

R
E

T
U

R
N

 VA
LU

E
S

If
w

aitpid()
returns because the status of a child process is a

vailable, this function returns a value equal to
the processID

of the child process for w
hich status is reported.

If
w

aitpid()
returns due to the deli

very of a
signal to the calling process,

−
1

is returned anderrno
is set toE

IN
T

R
.

If
this function w

as invoked
w

ith
W

N
O

H
A

N
G

set in
o

p
tio

n
s,ithas at least one child process specified by

p
id

for w
hich status is not available,

and status is not available for any
process specified bypid,

0
is returned.O

therw
ise,−

1
is returned, and

errno
is set to indicate the error.

E
R

R
O

R
Sw

aitpid()
w

ill fail if one or m
ore of the follow

ing is true:

E
C

H
ILD

T
he process or process group specified by

p
id

does not exist or is not a child of the call-
ing process or can ne

ver
be

in
the states specified byop

tio
n

s.

E
IN

T
R

w
aitpid()

w
as

interrupted due to the receipt of a signal sent by the calling process.

E
IN

VA
L

A
n invalid value w

as specified forop
tio

n
s.

S
E

E
 A

LS
Oexec(2),exit(2),fork

(2),sigaction(2),w
stat(5)

S
P

-K
lausur M

anual-A
uszug

2013-07-23
1

