
accept(2)
accept(2)

N
A

M
E

accept −
 accept a connection on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int accept(ints,struct sockaddr *a
d

d
r,int *

a
d

d
rle

n);

D
E

S
C

R
IP

T
IO

N
T

he argum
ents

is a socket that has been created w
ith

socket(3N
) and bound to an address w

ith
bind

(3N
),

and that is listening for connections after a call to
listen(3N

).
T

heaccept()function extracts the first con-
nection on the queue of pending connections, creates a ne

w
socket w

ith the properties ofs,
and allocates a

new
file descriptor,n

s,for the socket. Ifno pending connections are present on the queue and the socket is
not m

arked as non-blocking,accept()blocks the caller until a connection is present.
If the socket is

m
arked as non-blocking and no pending connections are present on the queue,

accept()returns an error as
described below.

The
accept()function uses thenetconfig(4) file to determ

ine theS
T

R
E

A
M

S
device file

nam
e associated w

iths.
T

his is the device on w
hich the connect indication w

ill be accepted.
T

he accepted
socket,n

s,is
used to read and w

rite data to and from
 the socket that connected to

n
s;itis

not used to accept
m

ore connections.
T

he original socket (
s)

rem
ains open for accepting further connections.

T
he argum

enta
d

d
r

is a result param
eter that is filled in w

ith the address of the connecting entity as it is
know

n to the com
m

unications layer
.

T
he exact form

at of thead
d

rparam
eter is determ

ined by the dom
ain

in w
hich the com

m
unication occurs.

T
he argum

enta
d

d
rle

n
is a value-result param

eter
.

Initially,
it

contains the am
ount of space pointed to by

a
d

d
r;on

return it contains the length in bytes of the address returned.

T
he

accept()function is used w
ith connection-based socket types, currently w

ith
S

O
C

K
_S

T
R

E
A

M
.

It is possible toselect(3C
) orpoll(2) a socket for the purpose of anaccept()by selecting or polling it for a

read.
H

ow
ever, this w

ill only indicate w
hen a connect indication is pending; it is still necessary to call

accept().

R
E

T
U

R
N

 VA
LU

E
S

T
he

accept()function returns−
1

on error.
Ifitsucceeds, it returns a non-ne

gative integer that is a descrip-
tor for the accepted socket.

E
R

R
O

R
Saccept()w

ill fail if:

E
B

A
D

F
T

he descriptor is invalid.

E
IN

T
R

T
he accept attem

pt w
as interrupted by the deli

very of a signal.

E
M

F
ILE

T
he per-process descriptor table is full.

E
N

O
D

E
V

T
he protocol fam

ily and type corresponding toscould not be found in thenetcon-
fig

file.

E
N

O
M

E
M

T
here w

as insufficient user m
em

ory a
vailable to com

plete the operation.

E
P

R
O

T O
A

protocol error has occurred; for exam
ple, the

S
T

R
E

A
M

S
protocol stack has not

been initialized or the connection has already been released.

E
W

O
U

LD
B

LO
C

K
T

he socket is m
arked as non-blocking and no connections are present to be

accepted.

S
E

E
 A

LS
Opoll(2),bind

(3N
),connect(3N

),listen(3N
),select(3C

),socket(3N
),netconfig(4),attributes(5),socket(5)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

bind(2)
bind(2)

N
A

M
E

bind −
 bind a nam

e to a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/socket.h>

int bind(int
s,const struct sockaddr *n

a
m

e,int
n

a
m

e
le

n);

D
E

S
C

R
IP

T
IO

N
bind()

assigns a nam
e to an unnam

ed sock
et. W

hena
socket is created w

ithsocket(3N
), it exists in a nam

e
space (address fam

ily) but has no nam
e assigned.

bind()
requests that the nam

e pointed to by
n

a
m

e
be

assigned to the socket.

R
E

T
U

R
N

 VA
LU

E
S

If the bind is successful,0is returned.A
return value of−

1
indicates an error,w

hich is further specified in
the globalerrno

.

E
R

R
O

R
ST

he
bind()

call w
ill fail if:

E
A

C
C

E
S

T
he requested address is protected and the current user has inadequate perm

ission
to access it.

E
A

D
D

R
IN

U
S

E
T

he specified address is already in use.

E
A

D
D

R
N

O
TA

VA
IL

T
he specified address is not a

vailable on the local m
achine.

E
B

A
D

F
s

is not a valid descriptor.

E
IN

VA
L

n
a

m
e

le
nis not the size of a valid address for the specified address fam

ily.

E
IN

VA
L

T
he socket is already bound to an address.

E
N

O
S

R
T

here w
ere insufficientST

R
E

A
M

S
resources for the operation to com

plete.

E
N

O
T

S
O

C
K

s
is a descriptor for a file, not a socket.

T
he follow

ing errors are specific to binding nam
es in the

U
N

IX
dom

ain:

E
A

C
C

E
S

S
earch perm

ission is denied for a com
ponent of the path prefix of the pathnam

e in
n

a
m

e.

E
IO

A
n I/O

 error occurred w
hile m

aking the directory entry or allocating the inode.

E
IS

D
IR

A
null pathnam

e w
as specified.

E
LO

O
P

Too
m

any
sym

bolic links w
ere encountered in translating the pathnam

e in
n

a
m

e.

E
N

O
E

N
T

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

edoes not exist.

E
N

O
T

D
IR

A
com

ponent of the path prefix of the pathnam
e in
n

a
m

eis not a directory.

E
R

O
F

S
T

he inode w
ould reside on a read-only file system

.

S
E

E
 A

LS
Ounlink

(2),socket(3N
),attributes(5),socket(5)

N
O

T
E

S
B

inding a nam
e in theU

N
IX

dom
ain creates a socket in the file system

 that m
ust be deleted by the caller

w
hen it is no longer needed (using

unlink
(2)).

T
he rules used in nam

e binding vary betw
een com

m
unication dom

ains.

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

dup(2)
dup(2)

N
A

M
E

dup, dup2 −
 duplicate a file descriptor

S
Y

N
O

P
S

IS#include <
unistd.h>

int dup(int
o

ld
fd);

int dup2(int
o

ld
fd,int

n
ew

fd);

D
E

S
C

R
IP

T
IO

N
dup() anddup2() create a copyofthe file descriptorold

fd.

dup() uses the low
est-num

bered unused descriptor for the ne
w

descriptor.

dup2() m
akesn

ew
fd

be the copy
of

o
ld

fd,closing
n

ew
fdfirst if necessary,but note the follow

ing:

*
If

o
ld

fd
is not a valid file descriptor

,then the call fails, andnew
fdis not closed.

*
If

o
ld

fd
is a valid file descriptor,and

n
ew

fd
has the sam

e value as
o

ld
fd,

then
dup2() does nothing, and

returnsn
ew

fd.

A
fter a successful return fromdup() ordup2(), the old and new

file descriptors m
ay be used interchange-

ably.
T

hey
refer to the sam

e open file description (see
open(2)) and thus share file offset and file status

flags; for exam
ple, if the file offset is m

odified by using
lseek(2) on one of the descriptors, the offset is also

changed for the other.

T
he two

descriptors do not share file descriptor flags (the close-on-e
xec

flag).
T

he
close-on-exec

flag
(F

D
_C

LO
E

X
E

C
;see

fcntl(2)) for the duplicate descriptor is off.

R
E

T
U

R
N

 VA
LU

E
dup() anddup2() return the new

descriptor,or
−

1
ifan

error occurred (in w
hich case,errn

o
is set appropri-

ately).

E
R

R
O

R
SE

B
A

D
F

o
ld

fd
isn’tan

open file descriptor,or
n

ew
fdis out of the allow

ed range for file descriptors.

E
B

U
S

Y
(Linux only) T

his m
ay be returned bydup2() during a race condition w

ithopen(2) anddup().

E
IN

T
R

T
he

dup2() call w
as interrupted by a signal; see

signal(7).

E
M

F
ILE

T
he process already has the m

axim
um

 num
ber of file descriptors open and tried to open a ne

w
one.

N
O

T
E

S
T

he error returned bydup2() is different from
 that returned byfcntl(...,F

_D
U

P
F

D
,

...)
w

hen
n

ew
fd

is out
of range.

O
n som

e system
s

dup2() also som
etim

es returnsEIN
VA

L
like

F
_D

U
P

F
D

.

If
n

ew
fd

w
as

open, any
errors that w

ould have been reported atclose(2) tim
e are lost.A

careful program
-

m
er w

ill not usedup2() w
ithout closingn

ew
fdfirst.

S
E

E
 A

LS
Oclose(2),fcntl(2),open(2)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

feof/ferror/fileno(3)
feof/ferror/fileno(3)

N
A

M
E

clearerr,feof, ferror,fileno −
 check and reset stream

 status

S
Y

N
O

P
S

IS#include <
stdio.h>

void clearerr(F
ILE

 *
stre

a
m);

int feof(F
ILE

 *
stre

a
m);

int ferror(F
ILE

 *
stre

a
m);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he functionclearerr() clears the end-of-file and error indicators for the stream
 pointed to by

stre
a

m.

T
he functionfeof() tests the end-of-file indicator for the stream

 pointed to by
stre

a
m,

returning non-zero if
it is set.

T
he end-of-file indicator can only be cleared by the function

clearerr().

T
he functionferror() tests the error indicator for the stream

 pointed to by
stre

a
m,returning non-zero if it is

set. T
heerror indicator can only be reset by the

clearerr() function.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

F
or

non-locking counterparts, seeunlocked_stdio(3).

E
R

R
O

R
ST

hese functions should not fail and do not set the e
xternal variable

e
rrn

o.
(H

ow
ever, in

case
fileno()

detects that its argum
ent is not a valid stream

, it m
ust return −

1 and set
e

rrn
o

to
E

B
A

D
F

.)

C
O

N
F

O
R

M
IN

G
 T

O
T

he functionsclearerr(),feof(), andferror() conform
 to C

89 and C
99.

S
E

E
 A

LS
Oopen(2),fdopen(3),stdio(3),unlocked_stdio(3)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

fopen/fdopen/fileno(3)
fopen/fdopen/fileno(3)

N
A

M
E

fopen, fdopen, fileno −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follow

ing sequences (A
dditional characters

m
ay follow

these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.
T

he file is created if it does not e
xist, otherw

ise it is truncated.The
stream

 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).The file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.M
odes "w

" or "w
+

" do not cause truncation of the file.
T

he file descriptor is not
dup’ed, and w

ill be closed w
hen the stream

 created by
fdopen

is closed.
T

he result of applyingfdopen
to a

shared m
em

ory object is undefined.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

socket(2) / ipv6(7)
socket(2) / ipv6(7)

N
A

M
E

ipv6, P
F

_IN
E

T
6 −

 Linux IP
v6 protocol im

plem
entation

S
Y

N
O

P
S

IS#include <
sys/socket.h>

#include <
netinet/in.h>

tcp
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_S

T
R

E
A

M
, 0);

ra
w

6
_

so
cket

=
socket(P

F
_IN

E
T

6, S
O

C
K

_R
AW

,
p

ro
to

co
l);

u
d

p
6

_
so

cket
=

socket(P
F

_IN
E

T
6, S

O
C

K
_D

G
R

A
M

,
p

ro
to

co
l);

D
E

S
C

R
IP

T
IO

N
Linux 2.2 optionally im

plem
ents the Internet P

rotocol, version 6.
T

his m
an page contains a description of

the IP
v6 basic A

P
I as im

plem
ented by the Linux kernel and glibc 2.1.

T
he interf

ace is based on the B
S

D
sockets interface; seesocket(7).

T
he IP

v6 A
P

I aim
s to be m

ostly com
patible w

ith the
ip

(7) v4 A
P

I.
O

nly differences are described in this
m

an page.

To bind anA
F

_IN
E

T
6

socket to any
process the local address should be copied from

 the
in

6
a

d
d

r_
a

n
yvari-

able w
hich hasin

6
_

a
d

d
rtype.

In
static initializationsIN

6A
D

D
R

_A
N

Y
_IN

IT
m

ay also be used, w
hich

expands to a constant e
xpression. B

othof them
 are in netw

ork order.

IP
v4 connections can be handled w

ith the v6 A
P

I by using the v4-m
apped-on-v6 address type; thus a pro-

gram
 only needs only to support this A

P
I type to support both protocols.

T
his is handled transparently by

the address handling functions in libc.

IP
v4 and IP

v6 share the local port space.
W

hen you get an IP
v4 connection or packet to a IP

v6 socket its
source address w

ill be m
apped to v6 and it w

ill be m
apped to v6.

A
ddress F

orm
at

struct sockaddr_in6 {
uint16_t

sin6_fam
ily;

/*
A

F
_IN

E
T

6 */
uint16_t

sin6_port;
/* port num

ber */
uint32_t

sin6_flow
info; /* IP

v6 flow
inform

ation */
struct in6_addr sin6_addr;

/* IP
v6 address */

uint32_t
sin6_scope_id;/* S

cope ID
 (new

in
2.4) */

};struct in6_addr {
unsigned chars6_addr[16];

/*IP
v6 address */

};

sin
6

_
fa

m
ilyis alw

ays set toA
F

_IN
E

T
6

;sin
6

_
p

o
rtis the protocol port (seesin

_
p

o
rtin

ip
(7));sin

6
_

flo
w

in
fo

is the IP
v6 flow

identifier;sin
6

_
a

d
d

ris the 128-bit IP
v6 address.sin

6
_

sco
p

e
_

idis an ID
 of depending of

on the scope of the address.
It is ne

w
in

L
inux 2.4.

Linux only supports it for link scope addresses, in that
casesin

6
_

sco
p

e
_

idcontains the interface inde
x

(seenetdevice(7))

R
E

T
U

R
N

 VA
LU

E
S

−
1

is returned if an error occurs.
O

therw
ise the return value is a descriptor referencing the socket.

N
O

T
E

S
T

he
so

cka
d

d
r_

in
6structure is bigger than the generic

so
cka

d
d

r.
Program

s that assum
e that all address

types can be stored safely in a
stru

ct so
cka

d
d

rneed to be changed to use
stru

ct so
cka

d
d

r_
sto

rage
for that

instead.

S
E

E
 A

LS
Ocm

sg(3),ip
(7)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

listen(2)
listen(2)

N
A

M
E

listen −
 listen for connections on a socket

S
Y

N
O

P
S

IS#include <
sys/types.h>

/* S
ee N

O
T

E
S

 */
#include <

sys/socket.h>

int listen(int
so

ckfd,int
b

a
cklog);

D
E

S
C

R
IP

T
IO

N
listen() m

arks the socket referred to by
so

ckfdas a passive socket, that is, as a socket that w
ill be used to

accept incom
ing connection requests using

accept(2).

T
he

so
ckfdargum

ent is a file descriptor that refers to a socket of type
S

O
C

K
_S

T
R

E
A

M
orS

O
C

K
_S

E
Q

-
P

A
 C

K
E

T
.

T
he

b
a

cklog
argum

ent defines the m
axim

um
 length to w

hich the queue of pending connections for
so

ckfd
m

ay grow
.

If
a

connection request arri
ves

w
hen the queue is full, the client m

ay recei
ve an

error w
ith an

indication ofE
C

O
N

N
R

E
F

U
S

E
D

or,ifthe underlying protocol supports retransm
ission, the request m

ay be
ignored so that a later reattem

pt at connection succeeds.

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
D

D
R

IN
U

S
E

A
nother socket is already listening on the sam

e port.

E
B

A
D

F
T

he argum
entso

ckfdis not a valid descriptor.

E
N

O
T

S
O

C
K

T
he argum

entso
ckfdis not a socket.

N
O

T
E

S
To accept connections, the follow

ing steps are perform
ed:

1.
A

socket is created w
ithsocket(2).

2.
T

he
socket is bound to a local address using

bind
(2), so that other sockets m

ay be
connect(2)ed

to it.

3.
A

w
illingness to accept incom

ing connections and a queue lim
it for incom

ing connections are
specified w

ithlisten().

4.
C

onnectionsare accepted w
ithaccept(2).

If the
b

a
cklog

argum
ent is greater than the value in

/p
ro

c/sys/n
e

t/co
re

/so
m

a
xco

n
n

,
then it is silently trun-

cated to that value; the default value in this file is 128.

E
X

A
M

P
LES

eebind
(2).

S
E

E
 A

LS
Oaccept(2),bind

(2),connect(2),socket(2),socket(7)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

pthread_create/pthread_e
xit(3)

pthread_create/pthread_e
xit(3)

N
A

M
E

pthread_create −
 create a ne

w
thread / pthread_exit −

 term
inate the calling thread

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_create(pthread_t *
th

re
a

d,
pthread_attr_t *

a
ttr,

void * (*
sta

rt_
ro

u
tin

e)(void *), void *
a

rg);

void pthread_exit(void *retva
l);

D
E

S
C

R
IP

T
IO

N
pthread_create

creates a new
thread of control that executes concurrently w

ith the calling thread. T
he ne

w
thread applies the functionsta

rt_
ro

u
tin

epassing ita
rg

as first argum
ent. T

he ne
w

thread term
inates either

explicitly,by
calling

pthread_exit(3), or im
plicitly,by

returning from
 thesta

rt_
ro

u
tin

efunction. T
he latter

case is equivalent to callingpthread_exit(3) w
ith the result returned bysta

rt_
ro

u
tin

eas exit code.

T
he

a
ttr

argum
ent specifies thread attributes to be applied to the ne

w
thread. S

eepthread_attr_init(3) for a
com

plete list of thread attributes. T
he
a

ttr
argum

ent can also beNU
LL

,in
w

hich case default attributes are
used: the created thread is joinable (not detached) and has default (non real-tim

e) scheduling polic
y.

pthread_exitterm
inates the execution of the calling thread.All cleanup handlers that ha

ve been set for the
calling thread w

ithpthread_cleanup_push(3) are executed in reverse order (the m
ost recently pushed han-

dler is executed first). F
inalization functions for thread-specific data are then called for all k

eys
that have

non-N
U

LL
values associated w

ith them
 in the calling thread (see

pthread_key_create(3)).
F

inally,
exe-

cution of the calling thread is stopped.

T
he

retva
l

argum
ent is the return value of the thread. It can be consulted from

 another thread using
pthread_join

(3).

R
E

T
U

R
N

 VA
LU

E
O

n success, the identifier of the ne
w

ly created thread is stored in the location pointed by the
th

re
a

d
argu-

m
ent, and a 0 is returned. O

n error
,a

non-zero error code is returned.

T
he

pthread_exitfunction never
returns.

E
R

R
O

R
SE

A
G

A
IN

not enough system
 resources to create a process for the ne

w
thread.

E
A

G
A

IN
m

ore thanP
T

H
R

E
A

D
_T

H
R

E
A

D
S

_M
A

X
threads are already acti

ve.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_join

(3),pthread_detach(3),pthread_attr_init(3).

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

pthread_detach(3)
pthread_detach(3)

N
A

M
E

pthread_detach −
 put a running thread in the detached state

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_detach(pthread_t th);

D
E

S
C

R
IP

T
IO

N
pthread_detach

put the threadth
in the detached state. T

his guarantees that the m
em

ory resources con-
sum

ed byth
w

ill be freed im
m

ediately w
henth

term
inates. H

ow
ever, this prevents other threads from

 syn-
chronizing on the term

ination ofthusing
pthread_join

.

A
thread can be created initially in the detached state, using the

detachstateattribute topthread_create(3).
In contrast,pthread_detach

applies to threads created in the joinable state, and w
hich need to be put in the

detached state later.

A
fter

pthread_detach
com

pletes, subsequent attem
pts to perform

pthread_join
on

th
w

ill fail. If another
thread is already joining the thread

th
at the tim

epthread_detach
is called,pthread_detach

does nothing
and leaves

th
in the joinable state.

R
E

T
U

R
N

 VA
LU

E
O

n success, 0 is returned. O
n error

,a
non-zero error code is returned.

E
R

R
O

R
SE

S
R

C
H

N
o thread could be found corresponding to that specified by

th

E
IN

VA
L

the threadth
is already in the detached state

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_create(3),pthread_join

(3),pthread_attr_setdetachstate(3).

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

sigaction(2)
sigaction(2)

N
A

M
E

sigaction −
 P

O
S

IX
 signal handling functions.

S
Y

N
O

P
S

IS#include <
signal.h>

int sigaction(int
sig

n
u

m,const struct sigaction *a
ct,struct sigaction *o

ld
a

ct);

D
E

S
C

R
IP

T
IO

N
T

he
sigaction

system
 call is used to change the action taken by a process on receipt of a specific signal.

sig
n

u
m

specifies the signal and can be an
y

valid signal exceptSIG
K

ILL
and

S
IG

S
T

O
P.

If
a

ctis non−
null, the new

action for signalsig
n

u
m

is installed from
a

ct.
If

o
ld

a
ctis non−

null, the previous
action is saved

in
o

ld
a

ct.

T
he

sigaction
structure is defined as som

ething like

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_m

ask;
int sa_flags;
void (*sa_restorer)(void);

}

O
n som

e architectures a union is in
volved - do not assign to bothsa

_
h

a
n

d
le

rand
sa

_
sig

a
ctio

n.

T
he

sa
_

re
sto

re
relem

ent is obsolete and should not be used.
P

O
S

IX
 does not specify asa

_
re

sto
re

rele-
m

ent.

sa
_

h
a

n
d

le
rspecifies the action to be associated w

ith
sig

n
u

m
and m

ay beS
IG

_D
F

L
for the default action,

S
IG

_IG
N

to ignore this signal, or a pointer to a signal handling function.

sa
_

m
a

skgives
a

mask of signals w
hich should be blocked during e

xecution of the signal handler
.

In
addi-

tion, the signal w
hich triggered the handler w

ill be blocked, unless the
S

A
_N

O
D

E
F

E
R

orS
A

_N
O

M
A

S
K

flags are used.

sa
_

flag
sspecifies a set of flags w

hich m
odify the beha

viour of the signal handling process. It is form
ed by

the bitw
ise O

R
 of zero or m

ore of the follow
ing:

S
A

_N
O

C
LD

S
T

O
P

If
sig

n
u

m
is

S
IG

C
H

LD
,do

not receive notification w
hen child processes stop (i.e., w

hen
child processes recei

ve one ofS
IG

S
T

O
P,S

IG
T

S
T

P
,S

IG
T

T
IN

orS
IG

T
T

O
U

).

S
A

_R
E

S
TA

R
T

P
rovide behaviour com

patible w
ith B

S
D

 signal sem
antics by m

aking certain system
 calls

restartable across signals.

R
E

T
U

R
N

 VA
LU

E
S

sigaction
returns 0 on success and -1 on error.

E
R

R
O

R
SE

IN
VA

L
A

n invalid signal was specified.
T

his w
ill also be generated if an attem

pt is m
ade to change the

action forS
IG

K
ILL

orS
IG

S
T

O
P,w

hich cannot be caught.

S
E

E
 A

LS
Okill(1),kill(2),killpg

(2),pause(2),sigsetops(3),

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

sigsetops(3C
)

sigsetops(3C
)

N
A

M
E

sigsetops, sigem
ptyset, sigfillset, sigaddset, sigdelset, sigism

em
ber −

 m
anipulate sets of signals

S
Y

N
O

P
S

IS#include <
signal.h>

int sigem
ptyset(sigset_t *se

t);

int sigfillset(sigset_t *se
t);

int sigaddset(sigset_t *se
t,int

sig
n

o);

int sigdelset(sigset_t *se
t,int

sig
n

o);

int sigism
em

ber(sigset_t *se
t,int

sig
n

o);

D
E

S
C

R
IP

T
IO

N
T

hese functions m
anipulatesig

se
t_

tdata types, representing the set of signals supported by the im
plem

en-
tation.

sigem
ptyset()initializes the set pointed to byse

tto exclude all signals defined by the system
.

sigfillset()initializes the set pointed to byse
tto include all signals defined by the system

.

sigaddset()adds the individual signal specified by the value of
sig

n
o

to the set pointed to byse
t.

sigdelset()deletes the individual signal specified by the value of
sig

n
o

from
 the set pointed to byse

t.

sigism
em

ber()checks w
hether the signal specified by the value of

sig
n

o
is a m

em
ber of the set pointed to

by
se

t.

A
ny

object of type
sig

se
t_

tm
ust be initialized by applying eithersigem

ptyset()or
sigfillset()

before
applying any

other operation.

R
E

T
U

R
N

 VA
LU

E
S

U
pon successful com

pletion, thesigism
em

ber()function returns a value of one if the specified signal is a
m

em
ber of the specified set, or a value of 0 if it is not. U

pon successful com
pletion, the other functions

return a value of 0. O
therw

ise a value of −
1 is returned and

errno
is set to indicate the error.

E
R

R
O

R
Ssigaddset(),sigdelset(),and

sigism
em

ber()w
ill fail if the follow

ing is true:

E
IN

VA
L

T
he value of thesig

n
o

argum
ent is not a valid signal num

ber.

sigfillset()w
ill fail if the follow

ing is true:

E
FA

U
LT

T
he

se
targum

ent specifies an in
valid address.

S
E

E
 A

LS
Osigaction(2),sigpending(2),sigprocm

ask(2),sigsuspend(2),attributes(5),signal(5)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

printf(3)
printf(3)

N
A

M
E

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf −
 form

atted output con
version

S
Y

N
O

P
S

IS#include <
stdio.h>

int printf(const char *
fo

rm
a

t,...);
int fprintf(F

ILE
 *

stre
a

m,const char *fo
rm

a
t,...);

int sprintf(char *
str,const char *fo

rm
a

t,...);
int snprintf(char *

str,size_tsize,const char *fo
rm

a
t,...);

...

D
E

S
C

R
IP

T
IO

N
T

he functions in theprintf() fam
ily produce output according to aform

a
tas described below.

The func-
tions

printf() and
vprintf() w

rite output tostd
o

u
t,

the standard output stream
;

fprintf
() and

vfprintf
()

w
rite output to the given

outputstre
a

m;
sprintf(),snprintf(),vsprintf() and

vsnprintf() w
rite to the char-

acter stringstr.

T
he functionssnprintf() and

vsnprintf() w
rite at m

ostsize
bytes (including the trailing null byte ('\0')) to

str.

T
hese eight functions w

rite the output under the control of a
fo

rm
a

tstring that specifies how
subsequent

argum
ents (or argum

ents accessed via the variable-length argum
ent facilities of

stdarg(3)) are converted for
output.

R
eturn

value
U

pon successful return, these functions return the num
ber of characters printed (not including the trailing

'\0' used to end output to strings).

T
he functionssnprintf() and

vsnprintf() do not w
rite m

ore thansize
bytes (including the trailing '\0').If

the output w
as truncated due to this lim

it then the return v
alue is the num

ber of characters (not including
the trailing '\0') w

hich would have been w
ritten to the final string if enough space had been a

vailable. T
hus,

a
return value ofsizeor m

ore m
eans that the output w

as truncated.
(S

ee also belo
w

under N
O

T
E

S
.)

If an output error is encountered, a ne
gative value is returned.

F
orm

at of the form
at string

T
he form

at string is a character string, beginning and ending in its initial shift state, if an
y.

The form
at

string is com
posed of zero or m

ore directi
ves: ordinary characters (not

%
), w

hich are copied unchanged to
the output stream

; and con
version specifications, each of w

hich results in fetching zero or m
ore subsequent

argum
ents.

E
achconversion specification is introduced by the character

%
,

and ends w
ith aco

nve
rsio

n
sp

e
cifie

r.
In

betw
een there m

ay be (in this order) zero or m
ore

flag
s,

an
optional m

inim
um

fie
ld

 w
id

th,
an

optionalp
re

cisio
nand an optionalle

n
g

th
 m

o
d

ifie
r.

T
he conversion specifier

A
character that specifies the type of con

version to be applied.
A

n exam
ple for a con

version specifier is:

s
T

he
co

n
st ch

a
r *argum

ent is expected to be a pointer to an array of character type (pointer to a
string).

C
haractersfrom

 the array are w
ritten up to (b

ut not including) a term
inating null byte

('\0'); if a precision is specified, no m
ore than the num

ber specified are w
ritten.
If a precision is

given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array,the array m

ust contain a term
inating null byte.

S
E

E
 A

LS
Oprintf(1),asprintf(3),dprintf(3),scanf(3),setlocale(3),w

crtom
b

(3),w
printf(3),locale(5)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

strcm
p(3)

strcm
p(3)

N
A

M
E

strcm
p, strncm

p −
 com

pare twostrings

S
Y

N
O

P
S

IS#include <
string.h>

int strcm
p(const char *s1,const char *s2);

int strncm
p(const char *s1,const char *s2,size_tn);

D
E

S
C

R
IP

T
IO

N
T

he
strcm

p() function com
pares the two

strings
s1

and
s2.

It
returns an integer less than, equal to, or

greater than zero ifs1
is found, respectively,to

be
less than, to m

atch, or be greater than
s2.

T
he

strncm
p() function is sim

ilar,except it only com
pares the first (at m

ost)
n

characters ofs1
and

s2.

R
E

T
U

R
N

 VA
LU

E
T

he
strcm

p() andstrncm
p() functions return an integer less than, equal to, or greater than zero if

s1
(or the

firstn
bytes thereof) is found, respecti

vely,to
be

less than, to m
atch, or be greater than

s2.

C
O

N
F

O
R

M
IN

G
 T

O
S

V
r4, 4.3B

S
D

, C
89, C

99.

S
E

E
 A

LS
Obcm

p(3),m
em

cm
p(3),strcasecm

p(3),strcoll(3),strncasecm
p(3),w

cscm
p(3),w

csncm
p(3)

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

strtok(3)
strtok(3)

N
A

M
E

strtok, strtok_r −
 extract tokens from

 strings

S
Y

N
O

P
S

IS#include <
string.h>

char *strtok(char *
str,const char *d

e
lim

);

char *strtok_r(char *
str,const char *d

e
lim

,char **
sa

ve
p

tr);

D
E

S
C

R
IP

T
IO

N
T

he
strtok

() function breaks a string into a sequence of zero or m
ore nonem

pty tok
ens.

O
nthe first call to

strtok
() the string to be parsed should be specified in

str.
In

each subsequent call that should parse the
sam

e string,strm
ust be N

U
LL.

T
he

d
e

lim
argum

ent specifies a set of bytes that delim
it the tokens in the parsed string.

T
he caller m

ay
specify different strings ind

e
lim

in successive calls that parse the sam
e string.

E
ach call tostrtok

() returns a pointer to a null-term
inated string containing the next tok

en. T
hisstring does

not include the delim
iting byte.

If no m
ore tokens are found,

strtok
() returns N

U
LL.

A
sequence of calls tostrtok

() that operate on the sam
e string m

aintains a pointer that determ
ines the point

from
 w

hich to start searching for the next tok
en.

T
hefirst call to

strtok
() sets this pointer to point to the

first byte of the string.
T

he start of the next token is determ
ined by scanning forw

ard for the next nondelim
-

iter byte in
str.

If
such a byte is found, it is taken as the start of the next tok

en.
Ifno such byte is found,

then there are no m
ore tokens, and

strtok
() returns N

U
LL.

(A
 string that is em

pty or that contains only
delim

iters w
ill thus causestrtok

() to return N
U

LL on the first call.)

T
he end of each token is found by scanning forw

ard until either the next delim
iter byte is found or until the

term
inating null byte ('\0') is encountered.

If a delim
iter byte is found, it is o

verw
ritten w

ith a null byte to
term

inate the current token, and
strtok

() saves
a

pointer to the follow
ing byte; that pointer w

ill be used as
the starting point w

hen searching for the next tok
en.

In
this case,strtok

() returns a pointer to the start of
the found token.

F
rom

 the above description, it follow
s that a sequence of tw

o
or

m
ore contiguous delim

iter bytes in the
parsed string is considered to be a single delim

iter
,

and that delim
iter bytes at the start or end of the string

are ignored.
P

ut another w
ay: the tokens returned by

strtok
() are alw

ays nonem
pty strings.

T
hus, for

exam
ple, given

the string "a
a

a
;;b

b
b

,", successive calls to
strtok

() that specify the delim
iter string "

;,"
w

ould return the strings "aa
a"

and "b
b

b", and then a null pointer.

T
he

strtok_r() function is a reentrant versionstrtok
().

T
he

sa
ve

p
trargum

ent is a pointer to acha
r *

vari-
able that is used internally bystrtok_r() in order to m

aintain context betw
een successi

ve calls that parse the
sam

e string.
O

n the first call tostrtok_r(),
str

should point to the string to be parsed, and the value of
sa

ve
p

tris ignored.In subsequent calls,str
should be N

U
LL, andsa

ve
p

trshould be unchanged since the
previous call.

D
ifferent strings m

ay be parsed concurrently using sequences of calls to
strtok_r() that specify different

sa
ve

p
trargum

ents.

R
E

T
U

R
N

 VA
LU

E
strtok

() andstrtok_r() return a pointer to the next token, or N
U

LL if there are no m
ore tokens.

AT
T

R
IB

U
T

E
S

M
ultithreading (see pthreads(7))

T
he

strtok
() function is not thread-safe, thestrtok_r() function is thread-safe.

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

qsort(3)
qsort(3)

N
A

M
E

qsort, qsort_r −
 sort an array

S
Y

N
O

P
S

IS#include <
stdlib.h>

void qsort(void *b
a

se,size_tn
m

e
m

b,size_tsize,
int (*

co
m

p
a

r)(const void *, const void *));

void qsort_r(void *
b

a
se,size_tn

m
e

m
b,size_tsize,

int (*
co

m
p

a
r)(const void *, const void *, void *),

void *
a

rg);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

qsort_r(): _G
N

U
_S

O
U

R
C

E

D
E

S
C

R
IP

T
IO

N
T

he
qsort() function sorts an array w

ithnm
e

m
belem

ents of sizesize.
T

he
b

a
seargum

ent points to the start
of the array.

T
he contents of the array are sorted in ascending order according to a com

parison function pointed to by
co

m
p

a
r,w

hich is called w
ith two

argum
ents that point to the objects being com

pared.

T
he com

parison function m
ust return an integer less than, equal to, or greater than zero if the first ar

gum
ent

is considered to be respecti
vely less than, equal to, or greater than the second.

If tw
o

m
em

bers com
pare as

equal, their order in the sorted array is undefined.

T
he

qsort_r() function is identical toqsort() except that the com
parison functioncom

p
a

rtakes a third
argum

ent.
A

pointer is passed to the com
parison function via

a
rg.

In
this w

ay,
the com

parison function
does not need to use global variables to pass through arbitrary argum

ents, and is therefore reentrant and
safe to use in threads.

If no global variables are needed in the com
parison function

co
m

p
a

r,qsort() is also safe to use in threads.

R
E

T
U

R
N

 VA
LU

E
T

he
qsort() andqsort_r() functions return no value.

V
E

R
S

IO
N

Sqsort_r() w
as added to glibc in version 2.8.

C
O

N
F

O
R

M
IN

G
 T

O
T

he
qsort() function conform

s to S
V

r4, 4.3B
S

D
, C

89, C
99.

N
O

T
E

S
Library routines suitable for use as the

co
m

p
a

rargum
ent toqsort() include

alphasort(3) and
version-

sort(3).
To

com
pare C

 strings, the com
parison function can call

strcm
p(3), as show

n in the exam
ple

below
.

E
X

A
M

P
LEF

or
one exam

ple of use, see the exam
ple under

bsearch(3).

A
nother exam

ple is the follow
ing program

, w
hich sorts the strings gi

ven
in

its com
m

and-line argum
ents:

#include <
stdio.h>

#include <
stdlib.h>

#include <
string.h>

static int
cm

pstringp(const void *p1, const void *p2)
{

S
P

-K
lausur M

anual-A
uszug

2016-07-19
1

qsort(3)
qsort(3)

/* T
he actual argum

ents to this function are "pointers to
pointers to char", but strcm

p(3) argum
ents are "pointers

to char", hence the follow
ing cast plus dereference */

return strcm
p(* (char * const *) p1, * (char * const *) p2);

}int
m

ain(int argc, char *argv[])
{

int j;

if (argc <
 2) {

fprintf(stderr,"U
sage: %

s <
string>

...\n", argv[0]);
exit(E

X
IT

_FA
ILU

R
E

);
}qsort(&

argv[1], argc −
 1, sizeof(char *), cm

pstringp);

for (j =
 1; j <

 argc; j+
+

)
puts(argv[j]);

exit(E
X

IT
_S

U
C

C
E

S
S

);
}

S
E

E
 A

LS
Osort(1),alphasort(3),strcm

p(3),versionsort(3)

C
O

LO
P

H
O

N
T

his page is part of release 3.74 of the Linux
m

a
n

-p
ages

project.
A

description of the project, inform
ation

about
reporting

bugs,
and

the
latest

version
of

this
page,

can
be

found
at

http://w
w

w
.kernel.org/doc/m

an−
pages/.

S
P

-K
lausur M

anual-A
uszug

2016-07-19
2

