
opendir/readdir(3)
opendir/readdir(3)

N
A

M
E

opendir −
 open a directory / readdir −

 read a directory

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
dirent.h>

D
IR

 *opendir(const char *n
a

m
e);

struct dirent *readdir(D
IR

 *
d

ir);
int readdir_r(D

IR
 *

d
irp,struct dirent *

e
n

try,struct dirent **
resu

lt);

D
E

S
C

R
IP

T
IO

N
 opendir

T
he

opendir()
function opens a directory stream

 corresponding to the directory
n

a
m

e,and returns a pointer
to the directory stream

.
T

he stream
 is positioned at the first entry in the directory.

R
E

T
U

R
N

 VA
LU

E
T

he
opendir()

function returns a pointer to the directory stream
 or N

U
LL if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir

T
he

readdir()
function returns a pointer to a dirent structure representing the next directory entry in the

directory stream
 pointed to bydir.

Itreturns N
U

LL on reaching the end-of-file or if an error occurred.

D
E

S
C

R
IP

T
IO

N
 readdir_r

T
he

readdir_r()
function initializes the structure referenced by

e
n

try
and storesa

pointer to this structure
in

resu
lt.

O
n

successful return, the pointer returned at
*re

su
ltw

ill have the sam
evalue as

the
argum

ent
e

n
try.U

pon reaching the end of the directory stream
, this pointer w

ill ha
ve the value N

U
LL.

T
he data returned byreaddir()

is overw
ritten by subsequent calls toreaddir()

for the
sam

e
directory

stream
.

T
he

d
ire

n
tstructure is defined as follow

s:

struct dirent {
long

d_ino;
/* inode num

ber */
off_t

d_off;
/*

offset to the next dirent */
unsigned shortd_reclen;

/*length of this record */
unsigned chard_type;

/*type of file */
char

d_nam
e[256];/* filenam

e */
};

R
E

T
U

R
N

 VA
LU

E
T

he
readdir()

function returns a pointer to a dirent structure, or N
U

LL if an error occurs or end-of-file is
reached.

readdir_r()
returns 0if successful or an error num

ber to indicate failure.

E
R

R
O

R
SE

A
C

C
E

SP
erm

ission denied.

E
N

O
E

N
TD

irectory does not exist, orna
m

eis an em
pty string.

E
N

O
T

D
IRn

a
m

eis not a directory.

G
S

P
-K

lausur M
anual-A

uszug
2017-02-22

1

feof/ferror/fileno(3)
feof/ferror/fileno(3)

N
A

M
E

clearerr,feof, ferror,fileno −
 check and reset stream

 status

S
Y

N
O

P
S

IS#include <
stdio.h>

void clearerr(F
ILE

 *
stre

a
m);

int feof(F
ILE

 *
stre

a
m);

int ferror(F
ILE

 *
stre

a
m);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he functionclearerr() clears the end-of-file and error indicators for the stream
 pointed to by

stre
a

m.

T
he functionfeof() tests the end-of-file indicator for the stream

 pointed to by
stre

a
m,

returning non-zero if
it is set.

T
he end-of-file indicator can only be cleared by the function

clearerr().

T
he functionferror() tests the error indicator for the stream

 pointed to by
stre

a
m,returning non-zero if it is

set. T
heerror indicator can only be reset by the

clearerr() function.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

F
or

non-locking counterparts, seeunlocked_stdio(3).

E
R

R
O

R
ST

hese functions should not f
ail and do not set the external v

ariable
e

rrn
o.

(H
ow

ever, in
case

fileno()
detects that its argum

ent is not a valid stream
, it m

ust return −
1 and set

e
rrn

o
to

E
B

A
D

F
.)

C
O

N
F

O
R

M
IN

G
 T

O
T

he functionsclearerr(),feof(), andferror() conform
 to C

89 and C
99.

S
E

E
 A

LS
Oopen(2),fdopen(3),stdio(3),unlocked_stdio(3)

G
S

P
-K

lausur M
anual-A

uszug
2017-02-22

1

fopen/fdopen/fileno(3)
fopen/fdopen/fileno(3)

N
A

M
E

fopen, fdopen, fileno −
 stream

 open functions

S
Y

N
O

P
S

IS#include <
stdio.h>

F
ILE

 *fopen(const char *
p

a
th,const char *m

o
d

e);
F

ILE
 *fdopen(int

fild
e

s,const char *m
o

d
e);

int fileno(F
ILE

 *
stre

a
m);

D
E

S
C

R
IP

T
IO

N
T

he
fopen

function opens the file w
hose nam

e is the string pointed to by
p

a
th

and associates a stream
 w

ith
it.T

he argum
entm

o
d

epoints to a string beginning w
ith one of the follo

w
ing sequences (A

dditional characters
m

ay follow
these sequences.):

r
O

pen text file for reading.
T

he stream
 is positioned at the beginning of the file.

r+
O

pen for reading and w
riting.

T
he stream

 is positioned at the beginning of the file.

w
T

runcate file to zero length or create text file for w
riting.

T
he stream

 is positioned at the be
ginning

of the file.

w
+

O
pen for reading and w

riting.The file is created if it does not exist, otherw
ise it is truncated.

T
he

stream
 is positioned at the beginning of the file.

a
O

pen for appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he
stream

 is
positioned at the end of the file.

a+
O

pen for reading and appending (w
riting at end of file).

T
he file is created if it does not e

xist.
T

he stream
 is positioned at the end of the file.

T
he

fdopen
function associates a stream

 w
ith the existing file descriptor

,
fild

e
s.

T
he

m
o

d
e

of the stream
(one of the values "r", "r+

", "w
", "w

+
", "a", "a+

") m
ust be com

patible w
ith the m

ode of the file descriptor
.

T
he file position indicator of the ne

w
stream

 is set to that belonging tofild
e

s,
and the error and end-of-file

indicators are cleared.
M

odes "w
" or "w

+
" do not cause truncation of the file.

T
he file descriptor is not

dup’ed, and w
ill be closed w

hen the stream
 created by

fdopen
is closed.

T
he result of applyingfdopen

to a
shared m

em
ory object is undefined.

T
he functionfileno() exam

ines the argum
ent
stre

a
m

and returns its integer descriptor.

R
E

T
U

R
N

 VA
LU

E
U

pon successful com
pletionfopen,

fdopen
and

freopen
return a

F
ILE

pointer.
O

therw
ise,N

U
LL

is
returned and the global variableerrn

o
is set to indicate the error.

E
R

R
O

R
SE

IN
VA

L
T

he
m

o
d

eprovided tofopen,fdopen,or
freopen

w
as

inv alid.

T
he

fopen,fdopen
and

freopen
functions m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the

routine
m

alloc(3).

T
he

fopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

open(2).

T
he

fdopen
function m

ay also fail and set
e

rrn
o

for any
ofthe errors specified for the routine

fcntl(2).

S
E

E
 A

LS
Oopen(2),fclose(3),fileno(3)

G
S

P
-K

lausur M
anual-A

uszug
2017-02-22

1

fgets(3)
fgets(3)

N
A

M
E

gets, fgets −
 get a string from

 a stream
fputs, puts −

 output of strings

S
Y

N
O

P
S

IS#include <
stdio.h>

char *gets(char *s);

char *fgets(char *s,int
n,F

ILE
*stre

a
m);

int fputs(const char *s,F
ILE

 *
stre

a
m);

int puts(const char *s);

D
E

S
C

R
IP

T
IO

N
 gets/fgets

T
he

gets()function reads characters from
 the standard input stream

 (see
intro

(3)),stdin,
into the array

pointed to bys,
until a new

line character is read or an end-of-file condition is encountered.
T

he ne
w

line
character is discarded and the string is term

inated w
ith a null character.

T
he

fgets()function reads characters from
 the

stre
a

m
into the array pointed to bys,

until
n−

1 characters
are read, or a new

line character is read and transferred to
s,or

an
end-of-file condition is encountered.The

string is then term
inated w

ith a null character.

W
hen usinggets(),

if
the length of an input line exceeds the size of

s,
indeterm

inate behavior m
ay result.

F
or

this reason, it is strongly recom
m

ended that
gets()be avoided in favor

of
fgets().

R
E

T
U

R
N

 VA
LU

E
S

If end-of-file is encountered and no characters ha
ve been read, no characters are transferred to

s
and a null

pointer is returned.
If a read error occurs, such as trying to use these functions on a file that has not been

opened for reading, a null pointer is returned and the error indicator for the stream
 is set.

If end-of-file is
encountered, theEO

F
indicator for the stream

 is set.
O

therw
ise
s

is returned.

E
R

R
O

R
ST

he
gets()and

fgets()functions w
ill fail if data needs to be read and:

E
O

V
E

R
F

LO
W

T
he file is a regular file and an attem

pt w
as m

ade to read at or be
yond the offset m

axi-
m

um
 associated w

ith the corresponding
stre

a
m.

D
E

S
C

R
IP

T
IO

N
 puts/fputs

fputs()
w

rites the strings
to

stre
a

m,w
ithout its trailing’\0’.

puts()w
rites the strings

and a trailing new
line tostd

o
u

t.

C
alls to the functions described here can be m

ix
ed w

ith each other and w
ith calls to other output functions

from
 thestdio

library for the sam
e output stream

.

R
E

T
U

R
N

 VA
LU

E
puts()and

fputs()
return a non - negative num

ber on success, or
E

O
F

on error.

G
S

P
-K

lausur M
anual-A

uszug
2017-02-22

1

pthread_create/pthread_e
xit(3)

pthread_create/pthread_e
xit(3)

N
A

M
E

pthread_create −
 create a ne

w
thread / pthread_exit −

 term
inate the calling thread

S
Y

N
O

P
S

IS#include <
pthread.h>

int pthread_create(pthread_t *
th

re
a

d,
pthread_attr_t *

a
ttr,

void * (*
sta

rt_
ro

u
tin

e)(void *), void *
a

rg);

void pthread_exit(void *retva
l);

D
E

S
C

R
IP

T
IO

N
pthread_create

creates a new
thread of control that executes concurrently w

ith the calling thread. T
he ne

w
thread applies the functionsta

rt_
ro

u
tin

epassing ita
rg

as first argum
ent. T

he ne
w

thread term
inates either

explicitly,by
calling

pthread_exit(3), or im
plicitly,by

returning from
 thesta

rt_
ro

u
tin

efunction. T
he latter

case is equivalent to callingpthread_exit(3) w
ith the result returned bysta

rt_
ro

u
tin

eas exit code.

T
he

a
ttr

argum
ent specifies thread attributes to be applied to the ne

w
thread. S

eepthread_attr_init(3) for a
com

plete list of thread attributes. T
he
a

ttr
argum

ent can also beNU
LL

,in
w

hich case default attributes are
used: the created thread is joinable (not detached) and has default (non real-tim

e) scheduling polic
y.

pthread_exitterm
inates the execution of the calling thread.All cleanup handlers that ha

ve been set for the
calling thread w

ithpthread_cleanup_push(3) are executed in reverse order (the m
ost recently pushed han-

dler is executed first). F
inalization functions for thread-specific data are then called for all k

eys
that have

non-N
U

LL
values associated w

ith them
 in the calling thread (see

pthread_key_create(3)).
F

inally,
exe-

cution of the calling thread is stopped.

T
he

retva
l

argum
ent is the return value of the thread. It can be consulted from

 another thread using
pthread_join

(3).

R
E

T
U

R
N

 VA
LU

E
O

n success, the identifier of the ne
w

ly created thread is stored in the location pointed by the
th

re
a

d
argu-

m
ent, and a 0 is returned. O

n error
,a

non-zero error code is returned.

T
he

pthread_exitfunction never
returns.

E
R

R
O

R
SE

A
G

A
IN

not enough system
 resources to create a process for the ne

w
thread.

E
A

G
A

IN
m

ore thanP
T

H
R

E
A

D
_T

H
R

E
A

D
S

_M
A

X
threads are already acti

ve.

A
U

T
H

O
RX

avier Leroy
<

X
avier.Leroy@

inria.fr>

S
E

E
 A

LS
Opthread_join

(3),pthread_detach(3),pthread_attr_init(3).

G
S

P
-K

lausur M
anual-A

uszug
2017-02-22

1

stat(2)
stat(2)

N
A

M
E

stat, fstat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int fstat(int
fd

,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

F
eature Test M

acro R
equirem

ents for glibc (see
feature_test_m

acros(7)):

lstat(): _B
S

D
_S

O
U

R
C

E
 || _X

O
P

E
N

_S
O

U
R

C
E

 >
=

 500

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about a file.

N
o perm

issions are required on the file itself, b
ut —

 in the
case ofstat() andlstat() —

 execute (search) perm
ission is required on all of the directories in

p
a

th
that lead

to the file.

stat() stats the file pointed to bypa
th

and fills in
buf.

lstat() is identical tostat(), except that ifp
a

th
is a sym

bolic link, then the link itself is stat-ed, not the file
that it refers to.

fstat() is identical tostat(), except that the file to be stat-ed is specified by the file descriptor
fd

.

A
ll of these system

 calls return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*ID

 of device containing file */
ino_t

st_ino;
/*inode num

ber */
m

ode_t
st_m

ode;
/*protection */

nlink_t
st_nlink;

/*num
ber of hard links */

uid_t
st_uid;

/*user ID
 of ow

ner */
gid_t

st_gid;
/*group ID

 of ow
ner */

dev_t
st_rdev;

/*
device ID

 (if special file) */
off_t

st_size;
/* total size, in bytes */

blksize_t st_blksize; /* blocksize for file system
 I/O

 */
blkcnt_t st_blocks; /*num

ber of blocks allocated */
tim

e_t
st_atim

e;/* tim
e of last access */

tim
e_t

st_m
tim

e;/* tim
e of last m

odification */
tim

e_t
st_ctim

e;/* tim
e of last status change */

};

T
he

st_
d

evfield describes the device on w
hich this file resides.

T
he

st_
rd

evfield describes the device that this file (inode) represents.

T
he

st_
sizefield gives

the size of the file (if it is a regular file or a sym
bolic link) in bytes.

T
he size of a

sym
link is the length of the pathnam

e it contains, w
ithout a trailing null byte.

T
he

st_
b

lo
cksfield indicates the num

ber of blocks allocated to the file, 512-byte units.
(T

his m
ay be

sm
aller thanst_

size/512 w
hen the file has holes.)

T
he

st_
b

lksizefield gives
the "preferred" blocksize for ef

ficient file system
 I/O

.
(W

riting to a file in sm
aller

chunks m
ay cause an inefficient read-m

odify-rew
rite.)

G
S

P
-K

lausur M
anual-A

uszug
2017-02-22

1

stat(2)
stat(2)

N
ot all of the Linux file system

s im
plem

ent all of the tim
e fields.

S
om

e file system
 types allo

w
m

ounting in
such a w

ay that file accesses do not cause an update of the
st_

a
tim

efield. (S
ee"noatim

e" inm
ount(8).)

T
he field

st_
a

tim
eis changed by file accesses, for exam

ple, by
execve(2),m

knod(2),pipe(2),utim
e(2) and

read(2) (of m
ore than zero bytes).

O
ther routines, like

m
m

ap(2), m
ay or m

ay not updatest_
a

tim
e.

T
he field

st_
m

tim
eis changed by file m

odifications, for exam
ple, by

m
knod(2),truncate(2),utim

e(2) and
w

rite
(2) (of m

ore than zero bytes).Moreover,
st_

m
tim

eof a directory is changed by the creation or dele-
tion of files in that directory.

T
he

st_
m

tim
efield is

n
o

tchanged for changes in o
w

ner,
group, hard link

count, or m
ode.

T
he field

st_
ctim

eis changed by w
riting or by setting inode inform

ation (i.e., o
w

ner,
group, link count,

m
ode, etc.).

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type using the

st_
m

o
d

efield:

S
_IS

R
E

G
(m

)
is

it a regular file?

S
_IS

D
IR

(m
)

directory?

S
_IS

C
H

R
(m

)
characterdevice?

S
_IS

B
LK

(m
)

blockdevice?

S
_IS

F
IF

O
(m

)
F

IF
O

(nam
ed pipe)?

S
_IS

LN
K

(m
)

sym
boliclink? (N

ot in P
O

S
IX

.1-1996.)

S
_IS

S
O

C
K(m

)
socket? (N

ot in P
O

S
IX

.1-1996.)

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

SS
earch perm

ission is denied for one of the directories in the path prefix of
p

a
th.

(S
ee also

path_resolution(7).)

E
B

A
D

F
fd

is bad.

E
FA

U
LTB

ad address.

E
LO

O
P

Too
m

any
sym

bolic links encountered w
hile tra

versing the path.

E
N

A
M

E
T

O
O

LO
N

G
F

ile nam
e too long.

E
N

O
E

N
TA

com
ponent of the pathpa

th
does not exist, or the path is an em

pty string.

E
N

O
M

E
MO

ut of m
em

ory (i.e., kernel m
em

ory).

E
N

O
T

D
IRA

com
ponent of the path is not a directory.

S
E

E
 A

LS
Oaccess(2),chm

od(2),chow
n(2),fstatat(2),readlink

(2),utim
e(2),capabilities(7),sym

link(7)

G
S

P
-K

lausur M
anual-A

uszug
2017-02-22

2

