
exec(2)
exec(2)

N
A

M
E

exec, execl, execv,execle, execve, execlp, execvp −
 execute a file

S
Y

N
O

P
S

IS#include <
unistd.h>

int execl(const char *p
a

th,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execv(const char *p
a

th,char *consta
rg

v[]);

int execle(const char *p
a

th,char *consta
rg

0
[],

... , const char *a
rg

n,
char *

/*N
U

LL
*/,char *conste

nvp
[]);

int execve
(const char *p

a
th,char *consta

rg
v[]

char *conste
nvp

[]);

int execlp (const char *file,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execvp (const char *file,char *consta
rg

v[]);

D
E

S
C

R
IP

T
IO

N
E

ach of the functions in theexecfam
ily overlays a new

process im
age on an old process.

T
he ne
w

process
im

age is constructed from
 an ordinary

,
executable file.

T
his file is either an e

xecutable object file, or a file
of data for an interpreter

.
T

here can be no return from
 a successful call to one of these functions because

the calling process im
age is o

verlaid by the new
process im

age.

W
hen a C

 program
 is executed, it is called as follow

s:

int m
ain (int argc, char∗argv[], char∗envp[]);

w
here

a
rg

c
is the argum

ent count,arg
v

is an array of character pointers to the argum
ents them

selves, and
e

nvp
is an array of character pointers to the environm

ent strings.
A

s indicated,
a

rg
c

is at least one, and the
first m

em
ber of the array points to a string containing the nam

e of the file.

T
he argum

entsa
rg

0,
...,a

rg
n

point to null-term
inated character strings.

T
hese strings constitute the ar

gu-
m

ent list available to the new
process im

age.C
onventionally at leasta

rg
0

should be present.The
a

rg
0

argum
ent points to a string that is the sam

e as
p

a
th

(or the last com
ponent ofpa

th).
T

he
list of argum

ent
strings is term

inated by a(char∗)0
argum

ent.

T
he

a
rg

v
argum

ent is an array of character pointers to null-term
inated strings.

T
hese strings constitute the

argum
ent list available to the new

process im
age.

B
y convention,a

rg
v

m
ust have atleast one m

em
ber
,and

it should point to a string that is the sam
e as
p

a
th

(or its last com
ponent).The

a
rg

v
argum

ent is term
inated

by a null pointer.

T
he

p
a

th
argum

ent points to a path nam
e that identifies the ne

w
process file.

T
he

file
argum

ent points to the newprocess file.If
file

does not contain a slash character
,the path prefix for

this file is obtained by a search of the directories passed in the
P

AT
H

environm
ent variable (seeenviron(5)).

F
ile descriptors open in the calling process rem

ain open in the ne
w

process.

S
ignals that are being caught by the calling process are set to the default disposition in the ne

w
process

im
age (seesignal(3C

)).
O

therw
ise,the new

process im
age inherits the signal dispositions of the calling

process.

R
E

T
U

R
N

 VA
LU

E
S

If a function in theexecfam
ily returns to the calling process, an error has occurred; the return value is

−
1

and
errno

is set to indicate the error.

S
P

-M
iniklausur M

anual-A
uszug

2014-10-13
1

fork(2)
fork(2)

N
A

M
E

fork −
 create a child process

S
Y

N
O

P
S

IS#include <
unistd.h>

pid_t fork(void);

D
E

S
C

R
IP

T
IO

N
fork

() creates a new
process by duplicating the calling process.

T
he ne
w

process, referred to as the
child

,is
an exact duplicate of the calling process, referred to as the

p
a

re
n

t,except for the follow
ing points:

*
T

he child has its ow
n unique process ID

, and this P
ID

 does not m
atch the ID

 of an
y

existing process
group (setpgid(2)).

*
T

he child’s
parent process ID

 is the sam
e as the parent’

s
process ID

.

*
T

he child does not inherit its parent’
s

m
em

ory locks (m
lock(2),m

lockall(2)).

*
P

rocess resource utilizations (
getrusage(2)) and C

P
U

 tim
e counters (

tim
es(2)) are reset to zero in the

child.

*
T

he child’s
set of pending signals is initially em

pty (
sigpending(2)).

*
T

he child does not inherit sem
aphore adjustm

ents from
 its parent (

sem
op(2)).

*
T

he child does not inherit record locks from
 its parent (

fcntl(2)).

*
T

he child does not inherit tim
ers from

 its parent (
setitim

er(2),alarm
(2),tim

er_create(2)).

*
T

he child does not inherit outstanding asynchronous I/O
 operations from

 its parent (
aio_read(3),

aio_w
rite(3)), nor does it inherit anyasynchronous I/O

 contexts from
 its parent (see

io_setup(2)).

N
ote the follow

ing further points:

*
T

he child process is created w
ith a single thread —

 the one that called
fork

(). T
he

entire virtual address
space of the parent is replicated in the child, including the states of m

ute
xes, condition variables, and

other pthreads objects; the use of
pthread_atfork

(3) m
ay be helpful for dealing w

ith problem
s that this

can cause.

*
T

he child inherits copies of the parent’
s

set of open file descriptors.
E

ach file descriptor in the child
refers to the sam

e open file description (see
open(2)) as the corresponding file descriptor in the parent.

T
his m

eans that the twodescriptors share open file status flags, current file offset, and signal-dri
ven

I/O
attributes (see the description of

F
_S

E
TO

W
N

and
F

_S
E

T
S

IG
in

fcntl(2)).

*
T

he child inherits copies of the parent’
s

set of open directory stream
s (see

opendir(3)). P
O

S
IX

.1-2001
says that the corresponding directory stream

s in the parent and child
m

a
y

share the directory stream
positioning; on Linux/glibc they

do
not.

R
E

T
U

R
N

 VA
LU

E
O

n success, the P
ID

 of the child process is returned in the parent, and 0 is returned in the child.
O

n f
ailure,

−
1 is returned in the parent, no child process is created, and

e
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
G

A
IN

fork
() cannot allocate sufficient m

em
ory to cop

y
the parent’spage tables and allocate a task struc-

ture for the child.

E
A

G
A

IN
It w

as not possible to create a ne
w

process because the caller’
s

R
LIM

IT
_N

P
R

O
C

resource lim
it

w
as

encountered.
To

exceed this lim
it, the process m

ust ha
ve either the

C
A

P
_S

Y
S

_A
D

M
IN

or
the

C
A

P
_S

Y
S

_R
E

S
O

U
R

C
Ecapability.

E
N

O
M

E
Mfork

() failed to allocate the necessary kernel structures because m
em

ory is tight.

S
P

-M
iniklausur M

anual-A
uszug

2014-10-13
1

printf(3)
printf(3)

N
A

M
E

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf −
 form

atted output con
version

S
Y

N
O

P
S

IS#include <
stdio.h>

int printf(const char *
fo

rm
a

t,...);
int fprintf(F

ILE
 *

stre
a

m,const char *fo
rm

a
t,...);

int sprintf(char *
str,const char *fo

rm
a

t,...);
int snprintf(char *

str,size_tsize,const char *fo
rm

a
t,...);

...

D
E

S
C

R
IP

T
IO

N
T

he functions in theprintf() fam
ily produce output according to aform

a
tas described below.

The func-
tions

printf() and
vprintf() w

rite output tostd
o

u
t,

the standard output stream
;

fprintf
() and

vfprintf
()

w
rite output to the given

outputstre
a

m;
sprintf(),snprintf(),vsprintf() and

vsnprintf() w
rite to the char-

acter stringstr.

T
he functionssnprintf() and

vsnprintf() w
rite at m

ostsize
bytes (including the trailing null byte ('\0')) to

str.

T
he

functions
vprintf(),

vfprintf
(),

vsprintf(),
vsnprintf()

are
equivalent

to
the

functionsprintf(),
fprintf

(),sprintf(),snprintf(), respectively,
except that they

are called w
ith ava

_
listinstead of a variable

num
ber of argum

ents.
T

hesefunctions do not call theva
_

e
n

d
m

acro.
B

ecausethey
inv oke the

va
_

a
rg

m
acro, the value ofap

is undefined after the call.
S

ee
stdarg(3).

T
hese eight functions w

rite the output under the control of a
fo

rm
a

tstring that specifies how
subsequent

argum
ents (or argum

ents accessed via the variable-length argum
ent facilities of

stdarg(3)) are converted for
output.

R
eturn

value
U

pon successful return, these functions return the num
ber of characters printed (not including the trailing

'\0' used to end output to strings).

T
he functionssnprintf() and

vsnprintf() do not w
rite m

ore thansize
bytes (including the trailing '\0').If

the output w
as truncated due to this lim

it then the return v
alue is the num

ber of characters (not including
the trailing '\0') w

hich would have been w
ritten to the final string if enough space had been a

vailable. T
hus,

a
return value ofsizeor m

ore m
eans that the output w

as truncated.
(S

ee also belo
w

under N
O

T
E

S
.)

If an output error is encountered, a ne
gative value is returned.

F
orm

at of the form
at string

T
he form

at string is a character string, beginning and ending in its initial shift state, if an
y.

The form
at

string is com
posed of zero or m

ore directi
ves: ordinary characters (not

%
), w

hich are copied unchanged to
the output stream

; and con
version specifications, each of w

hich results in fetching zero or m
ore subsequent

argum
ents.

E
achconversion specification is introduced by the character

%
,

and ends w
ith aco

nve
rsio

n
sp

e
cifie

r.
In

betw
een there m

ay be (in this order) zero or m
ore

flag
s,

an
optional m

inim
um

fie
ld

 w
id

th,
an

optionalp
re

cisio
nand an optionalle

n
g

th
 m

o
d

ifie
r.

T
he argum

ents m
ust correspond properly (after type prom

otion) w
ith the con

version specifier.
B

y
default,

the argum
ents are used in the order gi

ven, w
here each '*' and each con

version specifier asks for the ne
xt

argum
ent (and it is an error if insufficiently m

an
y

argum
ents are given).

O
ne

can also specify explicitly
w

hich argum
ent is taken, at each place w

here an ar
gum

ent is required, by w
riting "%

m
$" instead of '%

' and
"*m

$" instead of '*', w
here the decim

al integer m
 denotes the position in the ar

gum
ent list of the desired

argum
ent, indexed

starting from
 1.

T
hus,

printf("%
*d", w

idth, num
);

S
P

-M
iniklausur M

anual-A
uszug

2014-10-13
1

printf(3)
printf(3)

and

printf("%
2$*1$d", w

idth, num
);

are equivalent.
T

hesecond style allows repeated references to the sam
e ar

gum
ent.

T
heC

99 standard does
not include the style using '$', w

hich com
es from

 the S
ingle U

nix S
pecification.

If the style using '$' is
used, it m

ust be used throughout for all con
versions taking an argum

ent and all w
idth and precision ar

gu-
m

ents, but it m
ay be m

ixed w
ith "%

%
" form

ats w
hich do not consum

e an ar
gum

ent. T
herem

ay be no gaps
in the num

bers of argum
ents specified using '$'; for exam

ple, if ar
gum

ents 1 and 3 are specified, argum
ent 2

m
ust also be specified som

ew
here in the form

at string.

F
or

som
e num

eric conversions a radix character ("decim
al point") or thousands’ grouping character is used.

T
he actual character used depends on the

LC
_N

U
M

E
R

IC
part of the locale.T

he P
O

S
IX

 locale uses '.' as
radix character,and does not have a grouping character.T

hus,

printf("%
'.2f", 1234567.89);

results in "1234567.89" in the P
O

S
IX

 locale, in "1234567,89" in the nl_N
L locale, and in "1.234.567,89" in

the da_D
K

 locale.

T
he conversion specifier

A
character that specifies the type of con

version to be applied.
A

n exam
ple for a con

version specifier is:

s
T

he
co

n
st ch

a
r *argum

ent is expected to be a pointer to an array of character type (pointer to a
string).

C
haractersfrom

 the array are w
ritten up to (but not including) a term

inating null byte
('\0'); if a precision is specified, no m

ore than the num
ber specified are w

ritten.
If a precision is

given, no null byte need be present; if the precision is not specified, or is greater than the size of
the array,the array m

ust contain a term
inating null byte.

S
E

E
 A

LS
Oprintf(1),asprintf(3),dprintf(3),scanf(3),setlocale(3),w

crtom
b

(3),w
printf(3),locale(5)

C
O

LO
P

H
O

N
T

his page is part of release 3.05 of the Linux
m

a
n

-p
ages

project. A
description of the project, and inform

a-
tion about reporting bugs, can be found at http://w

w
w

.kernel.org/doc/m
an-pages/.

S
P

-M
iniklausur M

anual-A
uszug

2014-10-13
2

stat(2)
stat(2)

N
A

M
E

stat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about the specified file.

You
do

not need any
access rights to the file to

get this inform
ation but you need search rights to all directories nam

ed in the path leading to the file.

statstats the file pointed to bypa
th

and fills in
buf.

lstatis identical tostat,except in the case of a sym
bolic link, w

here the link itself is stat-ed, not the file that
it refers to.

T
hey

all return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*

device */
ino_t

st_ino;
/* inode */

m
ode_t

st_m
ode;

/* protection */
nlink_t

st_nlink;
/* num

ber of hard links */
uid_t

st_uid;
/* user ID

 of ow
ner */

gid_t
st_gid;

/* group ID
 of ow

ner */
dev_t

st_rdev;
/*

device type (if inode device) */
off_t

st_size;
/* total size, in bytes */

blksize_t
st_blksize;/* blocksize for filesystem

 I/O
 */

blkcnt_t
st_blocks;/* num

ber of blocks allocated */
tim

e_t
st_atim

e;
/* tim

e of last access */
tim

e_t
st_m

tim
e;

/* tim
e of last m

odification */
tim

e_t
st_ctim

e;
/* tim

e of last status change */
};

T
he value

st_
sizegives

the size of the file (if it is a regular file or a sym
link) in bytes. T

he size of a sym
link

is the length of the pathnam
e it contains, w

ithout trailing N
U

L.

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type in the field

st_
m

o
d

e
:

S
_IS

R
E

G
(m

)
isit a regular file?

S
_IS

D
IR

(m
)

directory?

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

S
S

earch perm
isson is denied for one of the directories in the path prefix of

p
a

th
.

E
N

O
E

N
T

A
com

ponent ofp
a

th
does not exist, orpa

th
is an em

pty string.

E
N

O
T

D
IR

A
com

ponent of the path prefix of
p

a
th

is not a directory.

S
P

-M
iniklausur M

anual-A
uszug

2014-10-13
1

w
aitpid(2)

w
aitpid(2)

N
A

M
E

w
aitpid −

 w
ait for child process to change state

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/w

ait.h>

pid_t w
aitpid(pid_t

p
id

,int *
sta

t_
lo

c,int
o

p
tio

n
s);

D
E

S
C

R
IP

T
IO

N
w

aitpid()
suspends the calling process until one of its children changes state; if a child process changed

state prior to the call tow
aitpid(),return is im

m
ediate.p

id
specifies a set of child processes for w

hich sta-
tus is requested.

If
p

id
is equal to(pid_t)−

1,status is requested for an
y

child process.

If
p

id
is greater than(pid_t)0,

it
specifies the processID

of the child process for w
hich status is

requested.

If
p

id
is equal to(pid_t)0

status is requested for an
y

child process w
hose process group

ID
is equal

to that of the calling process.

If
p

id
is less than(pid_t)−

1,
status is requested for an

y
child process w

hose process group
ID

is
equal to the absolute value of

p
id

.

If
w

aitpid()
returns because the status of a child process is a

vailable, then that status m
ay be e

valuated w
ith

the m
acros defined bywstat(5).

If the calling process had specified a non-zero value of
sta

t_
lo

c,the status
of the child process w

ill be stored in the location pointed to by
sta

t_
lo

c.

T
he

o
p

tio
n

sargum
ent is constructed from

 the bitw
ise inclusi

ve
O

R
of zero or m

ore of the following flags,
defined in the header<sys/w

ait.h>:

W
C

O
N

T
IN

U
E

D
T

he status of any
continued child process specified by

p
id,

w
hose status has not

been reported since it continued, is also reported to the calling process.

W
N

O
H

A
N

G
w

aitpid()
w

ill not suspend execution of the calling process if status is not im
m

e-
diately available for one of the child processes specified by

p
id

.

W
N

O
W

A
IT

K
eep the process w

hose status is returned in
sta

t_
lo

c
in a w

aitable state. T
he

process m
ay be w

aited for again w
ith identical results.

R
E

T
U

R
N

 VA
LU

E
S

If
w

aitpid()
returns because the status of a child process is a

vailable, this function returns a value equal to
the processID

of the child process for w
hich status is reported.

If
w

aitpid()
returns due to the deli

very of a
signal to the calling process,

−
1

is returned anderrno
is set toE

IN
T

R
.

If
this function w

as invoked
w

ith
W

N
O

H
A

N
G

set in
o

p
tio

n
s,ithas at least one child process specified by

p
id

for w
hich status is not available,

and status is not available for any
process specified bypid,

0
is returned.O

therw
ise,−

1
is returned, and

errno
is set to indicate the error.

E
R

R
O

R
Sw

aitpid()
w

ill fail if one or m
ore of the follow

ing is true:

E
C

H
ILD

T
he process or process group specified by

p
id

does not exist or is not a child of the call-
ing process or can ne

ver
be

in
the states specified byop

tio
n

s.

E
IN

T
R

w
aitpid()

w
as

interrupted due to the receipt of a signal sent by the calling process.

E
IN

VA
L

A
n invalid value w

as specified forop
tio

n
s.

S
E

E
 A

LS
Oexec(2),exit(2),fork

(2),sigaction(2),w
stat(5)

S
P

-M
iniklausur M

anual-A
uszug

2014-10-13
1

